1
|
Xiao H, Hou J, Wu Y, Zhao Y, Tu D, Ma X, Qiu R, Li L. The receptor-like cytoplasmic kinase OsSTRK1 regulates brassinosteroid signaling by phosphorylating OsGSK2. Cell Rep 2025; 44:115569. [PMID: 40220291 DOI: 10.1016/j.celrep.2025.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
In the BR signaling pathway, GSK3-like kinases are crucial negative regulators, and inactivation of GSK3-like kinases occurs through dephosphorylation by the phosphatase BSU1. However, the identity of the kinases that can phosphorylate GSK3-like kinases in BR signaling remains unknown. In this study, we identify that OsSTRK1 interacts with and phosphorylates OsGSK2 in rice to stabilize OsGSK2, preventing its interaction with the E3 ubiquitin ligase OsTUD1. Overexpression of OsSTRK1 leads to a BR-repressed phenotype and decreased sensitivity to BR, while RNAi of OsSTRK1 induces enhanced sensitivity to BR. We identify that Tyr-223 of OsGSK2 as a critical phosphorylation site that is essential for the role of OsSTRK1 in modulating BR signaling, thus influencing the growth and development of rice. Overall, our findings uncover the essential role of OsSTRK1 in the phosphorylation and activation of OsGSK2, thereby completing the assembly of the core components of the BR signaling pathway.
Collapse
Affiliation(s)
- Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daoyi Tu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ronghua Qiu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Zolkiewicz K, Ahmar S, Gruszka D. Genetic manipulations of brassinosteroid-related genes improve various agronomic traits and yield in cereals enabling new biotechnological revolution: Achievements and perspectives. Biotechnol Adv 2025; 81:108556. [PMID: 40081782 DOI: 10.1016/j.biotechadv.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Brassinosteroids (BRs) are steroid phytohormones which regulate various developmental and physiological processes throughout plant life cycle, from seed development and germination, up to modulation of reproduction and senescence. Importantly, mutants defective in the BR biosynthesis or response show various degree of plant height reduction (dwarfism or semi-dwarfism). This agronomic trait is of particular importance considering that in contrast to tall cereal varieties, semi-dwarf cereal plants are more tolerant to lodging which occurs during unfavorable weather conditions and constitutes a serious threat to plant reproduction and yield. Moreover, it was shown that the BR deficiency or insensitivity lead to erect stature of cereal plants what enables increase in planting density and yield. The valuable combinations of these traits make the BR-related mutants exceptional alternatives in breeding programs. Noteworthy, BRs play a noticeable role in regulation of grain/kernel shape and size. Therefore, these crucial agronomic traits may be manipulated specifically in BR-dependent manner. Importantly, the semi-dwarf mutants have been successfully introduced into cereal breeding programs in the past, and new semi-dwarf mutants developed through application of gene editing approach have been recently reported as promising alternatives for development of novel, high-yielding cereal cultivars. This review presents a comprehensive description of genetic manipulations of the BR-related genes aimed at improvements of various agronomic traits in the major cereal crops - rice, wheat, maize, and barley. These improvements may be achieved through application of panicle- or grain-specific promoters, overexpression or gain-of-function approaches, gene silencing, and targeted gene editing.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
3
|
Qiu R, Yao P, Yang J, Hou J, Xiao H, Wu Y, Tu D, Ma X, Zhao Y, Li L. OsIAA7 enhances heat stress tolerance by inhibiting the activity of OsARF6 in rice. Int J Biol Macromol 2025; 288:138746. [PMID: 39674487 DOI: 10.1016/j.ijbiomac.2024.138746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Heat stress (HS) severely affects the growth and yield of rice, necessitating a clear understanding of the molecular mechanisms underlying HS tolerance. In this study, we report that the Aux/IAA family gene, OsIAA7, whose expression is induced by HS and positively regulates HS tolerance in rice (Oryza sativa L.). The osiaa7 mutant exhibits reduced HS tolerance, whereas overexpression of OsIAA7 enhances it. Our findings suggest that OsIAA7 contributes to HS tolerance by reducing hydrogen peroxide accumulation and cell death. Physiological analysis indicates that OsIAA7 influences the levels of malondialdehyde, catalase, and chlorophyll A concentration in plants under HS conditions. RNA-seq analysis suggests that OsIAA7 modulates the expression of heat-responsive genes, contributing to HS tolerance. Further, biochemical analyses demonstrate a physical interaction between OsIAA7 and OsARF6, with OsIAA7 inhibiting the activity of OsARF6. RT-qPCR results support the notion that the positive regulatory factor OsIAA7 and the negative regulatory factor OsARF6 control HS tolerance by regulating the transcript levels of OsTT1 and OsTT3.1. Together, our results reveal the role of OsIAA7 in controlling HS tolerance through the modulation of physiological processes and the inhibition of OsARF6 activity, suggesting that some Aux/IAA family genes play a role in heat tolerance in rice.
Collapse
Affiliation(s)
- Ronghua Qiu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daoyi Tu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Yan Y, Wang H, Bi Y, Wang J, Li D, Song F. A distinct protein posttranslational modifications-linked OsATL32-OsPPKL2-OsGSK2 loop modulates rice immunity against blast disease. THE NEW PHYTOLOGIST 2024; 243:2332-2350. [PMID: 39056291 DOI: 10.1111/nph.19999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Li T, Wang Y, Natran A, Zhang Y, Wang H, Du K, Qin P, Yuan H, Chen W, Tu B, Inzé D, Dubois M. C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 contributes to GA-mediated growth and flowering by interaction with DELLA proteins. THE NEW PHYTOLOGIST 2024; 242:2555-2569. [PMID: 38594216 DOI: 10.1111/nph.19742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Gibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins. In this study, we combined GA response assays with protein-protein interaction analysis to infer the connection between Arabidopsis thaliana DELLAs and the C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), a phosphatase involved in the dephosphorylation of RNA polymerase II. We show that CPL3 directly interacts with DELLA proteins and promotes DELLA protein stability by inhibiting its degradation by the 26S proteasome. Consequently, CPL3 negatively modulates multiple GA-mediated processes of plant development, including hypocotyl elongation, flowering time, and anthocyanin accumulation. Taken together, our findings demonstrate that CPL3 serves as a novel regulator that could improve DELLA stability and thereby participate in GA signaling transduction.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - Yongqin Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China
| | - Annelore Natran
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - Yi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Kangxi Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China
| | - Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| |
Collapse
|
6
|
Sun X, Xie Y, Xu K, Li J. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:789-801. [PMID: 37818650 DOI: 10.1093/jxb/erad397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
F-box proteins participate in the regulation of many processes, including cell division, development, and plant hormone responses. Brassinosteroids (BRs) regulate plant growth and development by activating core transcriptional and other multiple factors. In rice, OVATE family proteins (OFPs) participate in BR signalling and regulate grain size. Here we identified an F-box E3 ubiquitin ligase, FBX206, that acts as a negative factor in BR signalling and regulates grain size and yield in rice. Suppressed expression of FBX206 by RNAi leads to promoted plant growth and increased grain yield. Molecular analyses showed that the expression levels of BR biosynthetic genes were up-regulated, whereas those of BR catabolic genes were down-regulated in FBX206-RNAi plants, resulting in the accumulation of 28-homoBL, one of the bioactive BRs. FBX206 interacted with OsOFP8, a positive regulator in BR signalling, and OsOFP19, a negative regulator in BR signalling. SCFFBX206 mediated the degradation of OsOFP8 but suppressed OsOFP19 degradation. OsOFP8 interacted with OsOFP19, and the reciprocal regulation between OsOFP8 and OsOFP19 required the presence of FBX206. FBX206 itself was ubiquitinated and degraded, but interactions of OsOFP8 and OsOFP19 synergistically suppressed the degradation of FBX206. Genetic interactions indicated an additive effect between FBX206 and OsOFP8 and epistatic effects of OsOFP19 on FBX206 and OsOFP8. Our study reveals the regulatory networks of FBX206, OsOFP8, and OsOFP19 in BR signalling that regulate grain size and yield in rice.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kaizun Xu
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Cheng M, Yuan H, Wang R, Wang W, Zhang L, Fan F, Li S. Identification and characterization of BES1 genes involved in grain size development of Oryza sativa L. Int J Biol Macromol 2023; 253:127327. [PMID: 37820910 DOI: 10.1016/j.ijbiomac.2023.127327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
BES1 (BRI1-EMS-SUPPRESSOR1) defines a unique class of plant-specific transcription factors that plays an essential role in response to Brassinosteroids (BRs) signal induction pathways. In our study, we conducted genome-wide scanning and comprehensive characterization of the BES1 gene family in rice and other eukaryotes, leading to valuable findings. Molecular docking experiments showed that all OsBES1 genes in rice could directly bind to BR small molecules. Among the identified genes, OsBES1-4 exhibited a remarkable response as it consistently showed induction upon exposure to various phytohormones after treatment. Further functional verification of OsBES1-4 revealed its impact on grain size. Overexpression of OsBES1-4 resulted in increased grain size, as confirmed by cytological observations showing an increase in cell length and cell number. Moreover, we identified that OsBES1-4 plays a role in rice grain size development by binding to the BR response element in the promoter region of the OsBZR1 gene. Evolutionary analysis indicated differentiation of OsBES1-4 between indica and japonica rice varieties, suggesting natural selection during the domestication process of cultivated rice. Therefore, we conclude that OsBES1-4 plays a crucial role in regulating rice grain size and has the potential to be an important target in rice breeding programs, and haplotype analysis found that all OsBES1 genes were associated with grain size development, either thousand-grain weight, grain length, or grain width. Overall, these findings suggest that the BES1 genes are involved in the regulation of grain size development in rice, and the utilization of SNPs in the OsBES1-4 gene promoter could be a favorable option for distinguishing indica and japonica.
Collapse
Affiliation(s)
- Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Licheng Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China.
| |
Collapse
|
9
|
Gong L, Li B, Zhu T, Xue B. Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica. FRONTIERS IN PLANT SCIENCE 2023; 14:1243806. [PMID: 37799547 PMCID: PMC10548141 DOI: 10.3389/fpls.2023.1243806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
Dirigent (DIR) proteins play essential roles in regulating plant growth and development, as well as enhancing resistance to abiotic and biotic stresses. However, the whole-genome identification and expression profiling analysis of DIR gene family in millet (Setaria italica (Si)) have not been systematically understood. In this study, we conducted genome-wide identification and expression analysis of the S. italica DIR gene family, including gene structures, conserved domains, evolutionary relationship, chromosomal locations, cis-elements, duplication events, gene collinearity and expression patterns. A total of 38 SiDIR members distributed on nine chromosomes were screened and identified. SiDIR family members in the same group showed higher sequence similarity. The phylogenetic tree divided the SiDIR proteins into six subfamilies: DIR-a, DIR-b/d, DIR-c, DIR-e, DIR-f, and DIR-g. According to the tertiary structure prediction, DIR proteins (like SiDIR7/8/9) themselves may form a trimer to exert function. The result of the syntenic analysis showed that tandem duplication may play the major driving force during the evolution of SiDIRs. RNA-seq data displayed higher expression of 16 SiDIR genes in root tissues, and this implied their potential functions during root development. The results of quantitative real-time PCR (RT-qPCR) assays revealed that SiDIR genes could respond to the stress of CaCl2, CdCl, NaCl, and PEG6000. This research shed light on the functions of SiDIRs in responding to abiotic stress and demonstrated their modulational potential during root development. In addition, the membrane localization of SiDIR7/19/22 was confirmed to be consistent with the forecast. The results above will provide a foundation for further and deeper investigation of DIRs.
Collapse
Affiliation(s)
- Luping Gong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Han C, Wang L, Lyu J, Shi W, Yao L, Fan M, Bai MY. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genomics 2023; 50:541-553. [PMID: 36914050 DOI: 10.1016/j.jgg.2023.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
As sessile organisms, plants have evolved sophisticated mechanisms to optimize their growth and development in response to fluctuating nutrient levels. Brassinosteroids (BRs) are a group of plant steroid hormones that play critical roles in plant growth and developmental processes as well as plant responses to environmental stimuli. Recently, multiple molecular mechanisms have been proposed to explain the integration of BRs with different nutrient signaling processes to coordinate gene expression, metabolism, growth, and survival. Here, we review recent advances in understanding the molecular regulatory mechanisms of the BR signaling pathway and the multifaceted roles of BR in the intertwined sensing, signaling, and metabolic processes of sugar, nitrogen, phosphorus, and iron. Further understanding and exploring these BR-related processes and mechanisms will facilitate advances in crop breeding for higher resource efficiency.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
11
|
OsαCA1 Affects Photosynthesis, Yield Potential, and Water Use Efficiency in Rice. Int J Mol Sci 2023; 24:ijms24065560. [PMID: 36982632 PMCID: PMC10056782 DOI: 10.3390/ijms24065560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Plant growth and crop yield are essentially determined by photosynthesis when considering carbon dioxide (CO2) availability. CO2 diffusion inside a leaf is one of the factors that dictate the CO2 concentrations in chloroplasts. Carbonic anhydrases (CAs) are zinc-containing enzymes that interconvert CO2 and bicarbonate ions (HCO3−), which, consequently, affect CO2 diffusion and thus play a fundamental role in all photosynthetic organisms. Recently, the great progress in the research in this field has immensely contributed to our understanding of the function of the β-type CAs; however, the analysis of α-type CAs in plants is still in its infancy. In this study, we identified and characterized the OsαCA1 gene in rice via the analysis of OsαCAs expression in flag leaves and the subcellular localization of its encoding protein. OsαCA1 encodes an α-type CA, whose protein is located in chloroplasts with a high abundance in photosynthetic tissues, including flag leaves, mature leaves, and panicles. OsαCA1 deficiency caused a significant reduction in assimilation rate, biomass accumulation, and grain yield. The growth and photosynthetic defects of the OsαCA1 mutant were attributable to the restricted CO2 supply at the chloroplast carboxylation sites, which could be partially rescued by the application of an elevated concentration of CO2 but not that of HCO3−. Furthermore, we have provided evidence that OsαCA1 positively regulates water use efficiency (WUE) in rice. In summary, our results reveal that the function of OsαCA1 is integral to rice photosynthesis and yield potential, underscoring the importance of α-type CAs in determining plant physiology and crop yield and providing genetic resources and new ideas for breeding high-yielding rice varieties.
Collapse
|