1
|
He GH, Meng Y, Zhang MH, Wang D, Meng R, Zhang L, Chu ZF, Wen J, Nie ZL. Extensive genome-wide phylogenetic discordance is due to incomplete lineage sorting in the rapidly radiated East Asian genus Nekemias (Vitaceae). ANNALS OF BOTANY 2025; 135:925-934. [PMID: 39715332 PMCID: PMC12064426 DOI: 10.1093/aob/mcae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND AND AIMS Nekemias is a small genus of the grape family, with nine species discontinuously distributed in temperate to subtropical zones of the Northern Hemisphere but mostly in East Asia. Previous phylogenetic studies on Nekemias have mainly been based on a few chloroplast markers, and the phylogenetic framework and systematic relationships are still highly contested. METHODS We carried out a systematic framework reconstruction of Nekemias and intra-generic reticulate evolutionary analyses based on extensive single-copy nuclear and chloroplast genomic data obtained by the Hyb-Seq approach, combining genome skimming and target enrichment. KEY RESULTS Both nuclear and chloroplast genomic data strongly support the monophyly of Nekemias with its division into two major lineages from East Asia and North America, respectively. There are strong and extensive topological conflicts among nuclear gene trees and between nuclear and chloroplast topologies within the genus, especially within the East Asian clade. CONCLUSIONS Rapid radiation through predominant incomplete lineage sorting (ILS) throughout the evolutionary history of the East Asian taxa is supported to explain the relatively high species diversity of Nekemias in East Asia. This study highlights the important role of short periods of rapid evolutionary radiations accompanied by ILS as a mechanism for the complex and fast species diversifications in the grape family as well as potentially in many other plant lineages in East Asia and beyond.
Collapse
Affiliation(s)
- Guan-Hao He
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ying Meng
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Meng-Hua Zhang
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Da Wang
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ran Meng
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Zhao-Fu Chu
- Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ze-Long Nie
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| |
Collapse
|
2
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
3
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
4
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
5
|
You Y, Yu J, Nie Z, Peng D, Barrett RL, Rabarijaona RN, Lai Y, Zhao Y, Dang VC, Chen Y, Chen Z, Wen J, Lu L. Transition of survival strategies under global climate shifts in the grape family. NATURE PLANTS 2024; 10:1100-1111. [PMID: 39009829 DOI: 10.1038/s41477-024-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Faced with environmental changes, plants may either move to track their ancestral niches or evolve to adapt to new niches. Vitaceae, the grape family, has evolved diverse adaptive traits facilitating a global expansion in wide-ranging habitats, making it ideal for investigating transition between move and evolve strategies and exploring the underlying mechanisms. Here we inferred the patterns of biogeographic diversification and trait evolution in Vitaceae based on a robust phylogeny with dense sampling including 495 species (~52% of Vitaceae species). Vitaceae probably originated from Asia-the diversity centre of extant genera and the major source of dispersals. Boundaries of the Eocene, Oligocene and Miocene were identified as turning points in shifting strategies. A significant decrease in move strategy was identified during the Oligocene, followed by increases in move and evolve. After the Miocene, evolve began to dominate, during which increased niche opportunities and key trait innovations played important roles.
Collapse
Affiliation(s)
- Yichen You
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinren Yu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelong Nie
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources and Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Danxiao Peng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Russell L Barrett
- Botanic Gardens of Sydney, National Herbarium of New South Wales, Australian Botanic Garden, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Romer Narindra Rabarijaona
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yangjun Lai
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yujie Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Viet-Cuong Dang
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
6
|
Li H, Liu Y, Fan P, Dai Z, Hao J, Duan W, Liang Z, Wang Y. The Genome of Vitis zhejiang-adstricta Strengthens the Protection and Utilization of the Endangered Ancient Grape Endemic to China. PLANT & CELL PHYSIOLOGY 2024; 65:216-227. [PMID: 37930871 PMCID: PMC10873524 DOI: 10.1093/pcp/pcad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Vitis zhejiang-adstricta (V. zhejiang-adstricta) is one of the most important and endangered wild grapes. It is a national key protected wild, rare and endangered ancient grape endemic to China and used as a candidate material for resistance breeding owing to its excellent significant disease resistance. Here, we present a high-quality chromosome-level assembly of V. zhejiang-adstricta (IB-VB-01), comprising 506.66 Mb assembled into 19 pseudo-chromosomes. The contig N50 length is 3.91 Mb with 31,196 annotated protein-coding genes. Comparative genome and evolutionary analyses illustrated that V. zhejiang-adstricta has a specific position in the evolution of East Asian Vitis and shared a common ancestor with Vitis vinifera during the divergence of the two species about 10.42 (between 9.34 and 11.12) Mya. The expanded gene families compared with those in plants were related to disease resistance, and constructed gene families were related to plant growth and primary metabolism. With the analysis of gene family expansion and contraction, the evolution of environmental adaptability and especially the NBS-LRR gene family of V. zhejiang-adstricta was elucidated based on the pathways of resistance genes (R genes), unique genes and structural variations. The near-complete and accurate diploid V. zhejiang-adstricta reference genome obtained herein serves as an important complement to wild grape genomes and will provide valuable genomic resources for investigating the genomic architecture of V. zhejiang-adstricta as well as for improving disease resistance breeding strategies in grape.
Collapse
Affiliation(s)
- Huayang Li
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- University of Chinese Academy of Sciences, 19 Yuquan Rd, Beijing 100049, PR China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Jiachen Hao
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| |
Collapse
|
7
|
Qin YQ, Zhang MH, Yang CY, Nie ZL, Wen J, Meng Y. Phylogenomics and divergence pattern of Polygonatum (Asparagaceae: Polygonateae) in the north temperate region. Mol Phylogenet Evol 2024; 190:107962. [PMID: 37926394 DOI: 10.1016/j.ympev.2023.107962] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Polygonatum is the largest genus of tribe Polygonateae (Asparagaceae) and is widely distributed in the temperate Northern Hemisphere, especially well diversified in southwestern China to northeastern Asia. Phylogenetic relationships of many species are still controversial. Hence it is necessary to clarify their phylogenetic relationships and infer possible reticulate relationships for the genus. In this study, genome-wide data of 43 species from Polygonatum and its closely related taxa were obtained by Hyb-Seq sequencing. The phylogenetic trees constructed from genome-wide nuclear and chloroplast sequences strongly supported the monophyly of Polygonatum with division into three major clades. A high level of incongruence was detected between nuclear and chloroplast trees as well as among gene trees within the genus, but all occurred within each major clade. However, introgression tests and reticulate evolution analyses revealed low level of gene flow and weak introgression events in the genus, suggesting hybridization and introgression were not dominant during the evolutionary diversification of Polygonatum in the Northern Hemisphere. This study provides important insights into reconstructing evolutionary relationships and speciation pattern of taxa from the north temperate flora.
Collapse
Affiliation(s)
- Yu-Qian Qin
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Meng-Hua Zhang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Chu-Yun Yang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| |
Collapse
|
8
|
Duan L, Fu L, Chen HF. Phylogenomic cytonuclear discordance and evolutionary histories of plants and animals. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2946-2948. [PMID: 37930475 DOI: 10.1007/s11427-023-2456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Lin Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Wei M, Liu J, Wang S, Wang X, Liu H, Ma Q, Wang J, Shi W. Genetic Diversity and Phylogenetic Analysis of Zygophyllum loczyi in Northwest China's Deserts Based on the Resequencing of the Genome. Genes (Basel) 2023; 14:2152. [PMID: 38136974 PMCID: PMC10742952 DOI: 10.3390/genes14122152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In order to study the genetics of local adaptation in all main deserts of northwest China, whole genomes of 169 individuals were resequenced, which covers 20 populations of Zygophyllum loczyi (Zygophyllales: Zygophylaceae). We describe more than 15 million single nucleotide polymorphisms and numerous InDels. The expected heterozygosity and PIC values associated with local adaptation varied significantly across biogeographic regions. Variation in environmental factors contributes largely to the population genetic structure of Z. loczyi. Bayesian analysis performed with STRUCTURE defined four genetic clusters, while the results of principle component analysis were similar. Our results shows that the Qaidam Desert group appears to be diverging into two branches characterized by significant geographic separation and gene flow with two neighboring deserts. Geological data assume that it is possible that the Taklamakan Desert was the original distribution site, and Z. loczyi could have migrated later on and expanded within other desert areas. The above findings provide insights into the processes involved in biogeography, phylogeny, and differentiation within the northwest deserts of China.
Collapse
Affiliation(s)
- Mengmeng Wei
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingdian Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Suoming Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (S.W.); (H.L.); (Q.M.)
| | - Xiyong Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| | - Haisuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (S.W.); (H.L.); (Q.M.)
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (S.W.); (H.L.); (Q.M.)
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| | - Wei Shi
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
10
|
Talavera A, Nie ZL, Ma ZY, Johnson G, Ickert-Bond SM, Zimmer EA, Wen J. Phylogenomic analyses using a new 1013-gene Vitaceae bait-set support major groups of North American Vitis. Mol Phylogenet Evol 2023:107866. [PMID: 37354923 DOI: 10.1016/j.ympev.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A set of newly designed Vitaceae baits targeting 1013 genes was employed to explore phylogenetic relationships among North American Vitis. Eurasian Vitis taxa including Vitis vinifera were found to be nested within North American Vitis subgenus Vitis. North American Vitis subgenus Vitis can be placed into nine main groups: the Monticola group, the Occidentales group, the Californica group, the Vinifera group (introduced from Eurasia), the Mustangensis group, the Palmata group, the Aestivalis group, the Labrusca group, and the Cinerea group. Strong cytonuclear discordances were detected in North American Vitis, with many species non-monophyletic in the plastid phylogeny, while monophyletic in the nuclear phylogeny. The phylogenomic analyses support recognizing four distinct species in the Vitis cinerea complex in North America: V. cinerea, V. baileyana, V. berlandieri, and V. simpsonii. Such treatment will better serve the conservation of wild Vitis diversity in North America. Yet the evolutionary history of Vitis is highly complex, with the concordance analyses indicating conflicting signals across the phylogeny. Cytonuclear discordances and Analyses using the Species Networks applying Quartets (SNaQ) method support extensive hybridizations in North American Vitis. The results further indicate that plastid genomes alone are insufficient for resolving the evolutionary history of plant groups that have undergone rampant hybridization, like the case in North American Vitis. Nuclear gene data are essential for species delimitation, identification and reconstructing evolutionary relationships; therefore, they are imperative for plant phylogenomic studies.
Collapse
Affiliation(s)
- Alicia Talavera
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA; Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain.
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Zhi-Yao Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000 China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Stefanie M Ickert-Bond
- UA Museum of the North Herbarium and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-6960, USA
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
11
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Target sequence capture data shed light on the deeper evolutionary relationships of subgenus Chamaecerasus in Lonicera (Caprifoliaceae). Mol Phylogenet Evol 2023; 184:107808. [PMID: 37156329 DOI: 10.1016/j.ympev.2023.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The genus Lonicera L. is widely distributed in the north temperate zone and is well-known for its high species richness and morphological diversity. Previous studies have suggested that many sections of Lonicera are not monophyletic and phylogenetic relationships within the genus are still poorly resolved. In this study, we sampled 37 accessions of Lonicera, covering four sections of subgenus Chamaecerasus plus six outgroup taxa, to recover the main clades of Lonicera based on sequences of nuclear loci generated by target enrichment and cpDNA from genome skimming. We found extensive cytonuclear discordance across the subgenus. Both nuclear and plastid phylogenetic analyses supported subgenus Chamaecerasus sister to subgenus Lonicera. Within subgenus Chamaecerasus, sections Isika and Nintooa were each polyphyletic. Based on the nuclear and chloroplast phylogenies, we propose to merge Lonicera korolkowii into section Coeloxylosteum and Lonicera caerulea into section Nintooa. In addition, Lonicera is estimated to have originated in the mid Oligocene (26.45 Ma). The stem age of section Nintooa was estimated to be 17.09 Ma (95% HPD: 13.30-24.45). The stem age of subgenus Lonicera was estimated to be 16.35 Ma (95% HPD: 14.12-23.66). Ancestral area reconstruction analyses indicate that subgenus Chamaecerasus originated in East Asia and Central Asia. In addition, sections Coeloxylosteum and Nintooa originated in East Asia, with subsequent dispersals into other areas. The aridification of the Asian interior likely promoted the rapid radiation of sections Coeloxylosteum and Nintooa within this region. Moreover, our biogeographic analysis fully supports the Bering and the North Atlantic Land Bridge hypotheses for the intercontinental migrations in the Northern Hemisphere. Overall, this study provides new insights into the taxonomically complex lineages of subgenus Chamaecerasus and the process of speciation.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA; Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Zhai Mingguo Academician Work Station, Sanya University, Sanya 572022, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA; BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Hua-Feng Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|