1
|
Eitelmann S, Kafitz KW, Rose CR, Meyer J. Quantitative, Dynamic Detection of Neuronal Na + Transients Using Multi-photon Excitation and Fluorescence Lifetime Imaging (FLIM) in Acute Mouse Brain Slices. Bio Protoc 2025; 15:e5175. [PMID: 39959289 PMCID: PMC11825299 DOI: 10.21769/bioprotoc.5175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a highly valuable technique in the fluorescence microscopy toolbox because it is essentially independent of indicator concentrations. Conventional fluorescence microscopy analyzes changes in emission intensity. In contrast, FLIM assesses the fluorescence lifetime, which is defined as the time a fluorophore remains in an excited state before emitting a photon. This principle is advantageous in experiments where fluorophore concentrations are expected to change, e.g., due to changes in cell volume. FLIM, however, requires collecting a substantial number of photons to accurately fit distribution plots, which constrains its ability for dynamic imaging. This limitation has recently been overcome by rapidFLIM, which utilizes ultra-low dead-time photodetectors in conjunction with sophisticated rapid electronics. The resulting reduction in dead-time to the picosecond range greatly enhances the potential for achieving high spatio-temporal resolution. Here, we demonstrate the use of multi-photon-based rapidFLIM with the sodium indicator ION NaTRIUM Green-2 (ING-2) for the quantitative, dynamic determination of Na+ concentrations in neurons in acute rodent brain tissue slices. We describe the loading of the dye into neurons and present a procedure for its calibration in situ. We show that rapidFLIM not only allows the unbiased determination of baseline Na+ concentrations but also allows dynamic imaging of changes in intracellular Na+, e.g., induced by inhibition of cellular ATP production. Overall, rapidFLIM, with its greatly improved signal-to-noise ratio and higher spatio-temporal resolution, will also facilitate dynamic measurements using other FLIM probes, particularly those with a low quantum yield. Key features • RapidFLIM of the sodium indicator ING-2 enables the intensity-independent recording of neuronal Na+ transients at unparalleled full frame rates of 0.5-1 Hz. • RapidFLIM is essentially independent of dye concentrations and therefore not affected by dye bleaching. • Full in situ calibrations enable the quantification of intracellular Na+ changes at high spatio-temporal resolution. • RapidFLIM of ING-2 allows unbiased determination of cellular Na+ loading also in conditions of strong cell swelling.
Collapse
Affiliation(s)
- Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Meyer
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Meyer J, Kafitz KW, Rose CR. Quantification of Astrocytic Sodium Signals Using Fluorescence Lifetime Imaging Microscopy (FLIM). Methods Mol Biol 2025; 2896:51-61. [PMID: 40111596 DOI: 10.1007/978-1-0716-4366-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Intensity-based imaging with fluorescent indicators is a widely used method for monitoring ion transients, including Ca2+ or Na+ signals, in astrocytes. However, using this technique, changes in ion concentrations cannot always be reliably separated from simultaneous changes in the concentration of the ion-sensitive fluorophores, e.g., due to changes in cell volume. An alternative approach is fluorescence lifetime imaging microscopy (FLIM), which is based on the time the fluorophore remains in the excited state rather than determining its emission intensity. Here, we describe the use of the chemical fluorescent indicator dyes ION Natrium Green 2 and CoroNa Green for FLIM of intracellular Na+ in astrocytes. We also present different strategies for analyzing the FLIM data obtained and demonstrate a procedure for their calibration. Overall, Na+-FLIM provides a reliable quantitative determination of changes in astrocyte Na+ concentrations independent of changes in fluorophore concentrations.
Collapse
Affiliation(s)
- Jan Meyer
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Karl W Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
4
|
Meyer J, Gerkau NJ, Kafitz KW, Patting M, Jolmes F, Henneberger C, Rose CR. Rapid Fluorescence Lifetime Imaging Reveals That TRPV4 Channels Promote Dysregulation of Neuronal Na + in Ischemia. J Neurosci 2022; 42:552-566. [PMID: 34872928 PMCID: PMC8805620 DOI: 10.1523/jneurosci.0819-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Fluorescence imaging is an indispensable method for analysis of diverse cellular and molecular processes, enabling, for example, detection of ions, second messengers, or metabolites. Intensity-based approaches, however, are prone to artifacts introduced by changes in fluorophore concentrations. This drawback can be overcome by fluorescence lifetime imaging (FLIM) based on time-correlated single-photon counting. FLIM often necessitates long photon collection times, resulting in strong temporal binning of dynamic processes. Recently, rapidFLIM was introduced, exploiting ultra-low dead-time photodetectors together with rapid electronics. Here, we demonstrate the applicability of rapidFLIM, combined with new and improved correction schemes, for spatiotemporal fluorescence lifetime imaging of low-emission fluorophores in a biological system. Using tissue slices of hippocampi of mice of either sex, loaded with the Na+ indicator ING2, we show that improved rapidFLIM enables quantitative, dynamic imaging of neuronal Na+ signals at a full-frame temporal resolution of 0.5 Hz. Induction of transient chemical ischemia resulted in unexpectedly large Na+ influx, accompanied by considerable cell swelling. Both Na+ loading and cell swelling were dampened on inhibition of TRPV4 channels. Together, rapidFLIM enabled the spatiotemporal visualization and quantification of neuronal Na+ transients at unprecedented speed and independent from changes in cell volume. Moreover, our experiments identified TRPV4 channels as hitherto unappreciated contributors to neuronal Na+ loading on metabolic failure, suggesting this pathway as a possible target to ameliorate excitotoxic damage. Finally, rapidFLIM will allow faster and more sensitive detection of a wide range of dynamic signals with other FLIM probes, most notably those with intrinsic low-photon emission.SIGNIFICANCE STATEMENT FLIM is an indispensable method for analysis of cellular processes. FLIM often necessitates long photon collection periods, requiring the sacrifice of temporal resolution at the expense of spatial information. Here, we demonstrate the applicability of the recently introduced rapidFLIM for quantitative, dynamic imaging with low-emission fluorophores in brain slices. RapidFLIM, combined with improved correction schemes, enabled intensity-independent recording of neuronal Na+ transients at unprecedented full-frame rates of 0.5 Hz. It also allowed quantitative imaging independent from changes in cell volume, revealing a surprisingly strong and hitherto uncovered contribution of TRPV4 channels to Na+ loading on energy failure. Collectively, our study thus provides a novel, unexpected insight into the mechanisms that are responsible for Na+ changes on energy depletion.
Collapse
Affiliation(s)
- Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, England
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Blömer LA, Canepari M, Filipis L. Ultrafast Sodium Imaging of the Axon Initial Segment of Neurons in Mouse Brain Slices. Curr Protoc 2021; 1:e64. [PMID: 33657273 DOI: 10.1002/cpz1.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monitoring Na+ influx in the axon initial segment (AIS) at high spatial and temporal resolution is fundamental to understanding the generation of an action potential (AP). Here, we present protocols to obtain this measurement, focusing on the AIS of layer 5 (L5) somatosensory cortex pyramidal neurons in mouse brain slices. We first outline how to prepare slices for this application, how to select and patch neurons, and how to optimize the image acquisition. Specifically, we describe the preparation of optimal slices, patching and loading of L5 pyramidal neurons with the Na+ indicator ING-2, and Na+ imaging at 100 µs temporal resolution with a pixel resolution of half a micron. Then, we present a data analysis strategy in order to extract information on the kinetics of activated voltage-gated Na+ channels by determining the change in Na+ by compensating for bleaching and calculating the time derivative of the resulting fit. In sum, this approach can be widely applied when investigating the function of Na+ channels during initiation of an AP and propagation under physiological or pathological conditions in neuronal subtypes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cortical slices Basic Protocol 2: Selection, patching, and Na+ fluorescence recording of a neuron Support Protocol: Calibrating Na+ fluorescence Basic Protocol 3: Data analysis.
Collapse
Affiliation(s)
- Laila Ananda Blömer
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbone, France
| | - Marco Canepari
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbone, France.,Institut National de la Santé et Recherche Médicale, Paris, France
| | - Luiza Filipis
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbone, France
| |
Collapse
|
6
|
Meyer J, Untiet V, Fahlke C, Gensch T, Rose CR. Quantitative determination of cellular [Na +] by fluorescence lifetime imaging with CoroNaGreen. J Gen Physiol 2019; 151:1319-1331. [PMID: 31597684 PMCID: PMC6829561 DOI: 10.1085/jgp.201912404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Meyer et al. establish the suitability of the sodium-sensitive indicator dye CoroNaGreen for fluorescence lifetime imaging inside cells. This approach represents a valuable tool for quantitative and dynamic determination of intracellular sodium concentrations independent of dye concentration. Fluorescence lifetime imaging microscopy (FLIM) with fluorescent ion sensors enables the measurement of ion concentrations based on the detection of photon emission events after brief excitation with a pulsed laser source. In contrast to intensity-based imaging, it is independent of dye concentration, photobleaching, or focus drift and has thus been successfully employed for quantitative analysis of, e.g., calcium levels in different cell types and cellular microdomains. Here, we tested the suitability of CoroNaGreen for FLIM-based determination of sodium concentration ([Na+]) inside cells. In vitro measurements confirmed that fluorescence lifetimes of CoroNaGreen (CoroNaFL) increased with increasing [Na+]. Moreover, CoroNaFL was largely independent of changes in potassium concentration or viscosity. Changes in pH slightly affected FL in the acidic range (pH ≤ 5.5). For intracellular determination of [Na+], HEK293T cells were loaded with the membrane-permeable form of CoroNaGreen. Fluorescence decay curves of CoroNaGreen, derived from time-correlated single-photon counting, were approximated by a bi-exponential decay. In situ calibrations revealed a sigmoidal dependence of CoroNaFL on [Na+] between 0 and 150 mM, exhibiting an apparent Kd of ∼80 mM. Based on these calibrations, a [Na+] of 17.6 mM was determined in the cytosol. Cellular nuclei showed a significantly lower [Na+] of 13.0 mM, whereas [Na+] in perinuclear regions was significantly higher (26.5 mM). Metabolic inhibition or blocking the Na+/K+-ATPase by removal of extracellular K+ caused significant [Na+] increases in all cellular subcompartments. Using an alternative approach for data analysis (“Ratio FLIM”) increased the temporal resolution and revealed a sequential response to K+ removal, with cytosolic [Na+] increasing first, followed by the nucleus and finally the perinuclear regions. Taken together, our results show that CoroNaGreen is suitable for dynamic, FLIM-based determination of intracellular [Na+]. This approach thus represents a valuable tool for quantitative determination of [Na+] and changes thereof in different subcellular compartments.
Collapse
Affiliation(s)
- Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Verena Untiet
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|