1
|
Chen J, Ren Y, Daharsh L, Liu L, Kang G, Li Q, Wei Q, Wan Y, Xu J. Identification of Unequally Represented Founder Viruses Among Tissues in Very Early SIV Rectal Transmission. Front Microbiol 2018; 9:557. [PMID: 29651274 PMCID: PMC5884942 DOI: 10.3389/fmicb.2018.00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Characterizing the transmitted/founder (T/F) viruses of multi-variant SIV infection may shed new light on the understanding of mucosal transmission. We intrarectally inoculated six Chinese rhesus macaques with a single high dose of SIVmac251 (3.1 × 104 TCID50) and obtained 985 full-length env sequences from multiple tissues at 6 and 10 days post-infection by single genome amplification (SGA). All 6 monkeys were infected with a range of 2 to 8 T/F viruses and the dominant variants from the inoculum were still dominant in different tissues from each monkey. Interestingly, our data showed that a cluster of rare T/F viruses was unequally represented in different tissues. This cluster of rare T/F viruses phylogenetically related to the non-dominant SIV variants in the inoculum and was not detected in any rectum tissues, but could be identified in the descending colon, jejunum, spleen, or plasma. In 2 out of 6 macaques, identical SIVmac251 variants belonging to this cluster were detected simultaneously in descending colon/jejunum and the inoculum. We also demonstrated that the average CG dinucleotide frequency of these rare T/F viruses found in tissues, as well as non-dominant variants in the inoculum, was significantly higher than the dominant T/F viruses in tissues and the inoculum. Collectively, these findings suggest that descending colon/jejunum might be more susceptible than rectum to SIV in the very early phase of infection. And host CG suppression, which was previously shown to inhibit HIV replication in vitro, may also contribute to the bottleneck selection during in vivo transmission.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqin Ren
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Lance Daharsh
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Lu Liu
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yanmin Wan
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jianqing Xu
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Bissel SJ, Gurnsey K, Jedema HP, Smith NF, Wang G, Bradberry CW, Wiley CA. Aged Chinese-origin rhesus macaques infected with SIV develop marked viremia in absence of clinical disease, inflammation or cognitive impairment. Retrovirology 2018; 15:17. [PMID: 29391069 PMCID: PMC5796498 DOI: 10.1186/s12977-018-0400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Damage to the central nervous system during HIV infection can lead to variable neurobehavioral dysfunction termed HIV-associated neurocognitive disorders (HAND). There is no clear consensus regarding the neuropathological or cellular basis of HAND. We sought to study the potential contribution of aging to the pathogenesis of HAND. Aged (range = 14.7-24.8 year) rhesus macaques of Chinese origin (RM-Ch) (n = 23) were trained to perform cognitive tasks. Macaques were then divided into four groups to assess the impact of SIVmac251 infection (n = 12) and combined antiretroviral therapy (CART) (5 infected; 5 mock-infected) on the execution of these tasks. RESULTS Aged SIV-infected RM-Ch demonstrated significant plasma viremia and modest CSF viral loads but showed few clinical signs, no elevations of systemic temperature, and no changes in activity levels, platelet counts or weight. Concentrations of biomarkers of acute and chronic inflammation such as soluble CD14, CXCL10, IL-6 and TNF-α are known to be elevated following SIV infection of young adult macaques of several species, but concentrations of these biomarkers did not shift after SIV infection in aged RM-Ch and remained similar to mock-infected macaques. Neither acute nor chronic SIV infection or CART had a significant impact on accuracy, speed or percent completion in a sensorimotor test. CONCLUSIONS Viremia in the absence of a chronic elevated inflammatory response seen in some aged RM-Ch is reminiscent of SIV infection in natural disease resistant hosts. The absence of cognitive impairment during SIV infection in aged RM-Ch might be in part attributed to diminishment of some facets of the immunological response. Additional study encompassing species and age differences is necessary to substantiate this hypothesis.
Collapse
Affiliation(s)
- Stephanie J. Bissel
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
| | - Kate Gurnsey
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
| | - Hank P. Jedema
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
- Present Address: National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Nicholas F. Smith
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
| | - Guoji Wang
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
| | - Charles W. Bradberry
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
- Veterans Affairs Pittsburgh Healthcare System, 4100 Allequippa Street, Pittsburgh, PA 15213 USA
- Present Address: National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Clayton A. Wiley
- University of Pittsburgh, 3550 Terrace Street, S758 Scaife Hall, Pittsburgh, PA 15261 USA
| |
Collapse
|
3
|
Sun M, Zheng H, Xie Y, Li B, Long H, Guo G, Guo L, Wang J, Ning R, Li Y, Liu L. Functional effector memory T cells contribute to protection from superinfection with heterologous simian immunodeficiency virus or simian-human immunodeficiency virus isolates in Chinese rhesus macaques. Arch Virol 2017; 162:1211-1221. [PMID: 28110425 DOI: 10.1007/s00705-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Many studies have revealed a protective effect of infection of an individual with an immunodeficiency virus against subsequent infection with a heterologous strain. However, the extent of protection against superinfection conferred by the first infection and the biological consequences of superinfection are not well understood. Here, we report that a rhesus monkey model of mucosal superinfection was established to investigate the protective immune response. Protection against superinfection was shown to correlate with the extent of the polyfunctionality of CD4+ effector memory T cells, whereas neutralizing antibody responses did not protect against superinfection in this model. Notably, immunodeficiency-virus-associated effector memory T-cell responses might significantly contribute to the suppression of virus superinfection. This provides a potential theoretical basis for the development of an HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yingpeng Xie
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Bingxiang Li
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Haiting Long
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ge Guo
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lei Guo
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ruotong Ning
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Longding Liu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
4
|
Xue J, Fu C, Cong Z, Peng L, Peng Z, Chen T, Wang W, Jiang H, Wei Q, Qin C. Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J 2016; 284:97-113. [PMID: 27981746 DOI: 10.1111/febs.13955] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
HIV-1-infected macrophages are a key contributor to the formation of a viral reservoir and new treatment strategies focus on eliminating this pool of virus. Galectin-3 is a potent apoptosis-inducing protein that regulates diverse cellular activities. In the present study, we investigated whether galectin-3 could induce cell death in HIV-1-infected macrophages using HIV-1-infected THP1 monocytes (THP1-MNs) and THP1-derived macrophages (THP1-MΦs) as in vitro cellular models. We found that THP1-MΦs were more resistant than the THP1-MNs to HIV-1 infection-induced death, and that HIV-1 infection of the THP1-MΦs increased expression of the anti-apoptotic proteins Mcl-1, Bcl-2 and Bcl-xL. Additionally, galectin-3 but not FasL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand or TNF-α, could induce cell death in HIV-1-infected THP1-MΦs. A similar result was shown for primary human monocyte-derived macrophages. Galectin-3-induced cell death was also significantly increased in macrophages obtained from SIVmac251-infected macaques compared to that of macrophages from healthy macaques. Furthermore, galectin-3-induced cell death in HIV-1-infected THP1-MΦs was caspase independent. Interestingly, endonuclease G (Endo G) was increased in the nucleus and decreased in the cytoplasm of galectin-3-treated cells; thus, galectin-3-induced cell death in HIV-1-infected THP1-MΦs is most likely related to the translocation of Endo G from the cytoplasm to the nucleus. These findings suggest that galectin-3 may potentially aid in the eradication of HIV-1/SIV-infected macrophages.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Chunyan Fu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Zhe Cong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Lingjuan Peng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Zhuoying Peng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Ting Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Wei Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Hong Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| |
Collapse
|