1
|
O'Mahony C, Hidalgo-Lanussa O, Barreto GE. Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease. Exp Gerontol 2025; 200:112679. [PMID: 39778695 DOI: 10.1016/j.exger.2025.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process. In this context, here we explore the potential of forkhead box O3 (FOXO3) as a critical mediator linking metabolic disturbances to hormonal decline. We propose that FOXO3 plays a key role in the intersection of menopause and AD, given its dysregulation in both AD patients and postmenopausal women, modulating cellular metabolism through interactions with the AMPK/AKT/PI3K pathways. This relationship highlights the intersection between hormonal changes and increased AD susceptibility. This review aims to open a discussion on FOXO3's contribution to the metabolic dysregulation seen in menopause and its impact on the progression of AD. Understanding the functional role of FOXO3 in menopause-associated metabolic changes could lead to targeted therapeutic strategies, offering novel insights for managing for this condition.
Collapse
Affiliation(s)
- Christopher O'Mahony
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Oscar Hidalgo-Lanussa
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
2
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 PMCID: PMC11653054 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Chen C, Tang F, Zhu M, Wang C, Zhou H, Zhang C, Feng Y. Role of inflammatory mediators in intracranial aneurysms: A review. Clin Neurol Neurosurg 2024; 242:108329. [PMID: 38781806 DOI: 10.1016/j.clineuro.2024.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The formation, growth, and rupture of intracranial aneurysms (IAs) involve hemodynamics, blood pressure, external stimuli, and a series of hormonal changes. In addition, inflammatory response causes the release of a series of inflammatory mediators, such as IL, TNF-α, MCP-1, and MMPs, which directly or indirectly promote the development process of IA. However, the specific role of these inflammatory mediators in the pathophysiological process of IA remains unclear. Recently, several anti-inflammatory, lipid-lowering, hormone-regulating drugs have been found to have a potentially protective effect on reducing IA formation and rupture in the population. These therapeutic mechanisms have not been fully elucidated, but we can look for potential therapeutic targets that may interfere with the formation and breakdown of IA by studying the relevant inflammatory response and the mechanism of IA formation and rupture involved in inflammatory mediators.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Fengjiao Tang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Meng Zhu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China.
| |
Collapse
|
4
|
Pradhyumnan H, Patel SH, Furones-Alonso O, Zhao W, Bramlett HM, Raval AP. Electronic Cigarette Vape Exposure Exacerbates Post-Ischemic Outcomes in Female but Not in Male Rats. Stroke 2024; 55:735-746. [PMID: 38323450 PMCID: PMC10940219 DOI: 10.1161/strokeaha.123.046101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Nicotine-containing electronic cigarette (EC) vaping has become popular worldwide, and our understanding of the effects of vaping on stroke outcomes is elusive. Using a rat model of transient middle cerebral artery occlusion, the current exploratory study aims to evaluate the sex-dependent effects of EC exposure on brain energy metabolism and stroke outcomes. METHODS Adult Sprague-Dawley rats of both sexes were randomly assigned to air/EC vapor (5% nicotine Juul pods) exposure for 16 nights, followed by randomization into 3 cohorts. The first cohort underwent exposure to air/EC preceding randomization to transient middle cerebral artery occlusion (90 minutes) or sham surgery, followed by survival for 21 days. During the survival period, rats underwent sensorimotor and Morris water maze testing. Subsequently, brains were collected for histopathology. A second cohort was exposed to air/EC after which brains were collected for unbiased metabolomics analysis. The third cohort of animals was exposed to air/EC and received transient middle cerebral artery occlusion/sham surgery, and brain tissue was collected 24 hours later for biochemical analysis. RESULTS In females, EC significantly increased (P<0.05) infarct volumes by 94% as compared with air-exposed rats, 165±50 mm3 in EC-exposed rats, and 85±29 mm3 in air-exposed rats, respectively, while in males such a difference was not apparent. Morris water maze data showed significant deficits in spatial learning and working memory in the EC sham or transient middle cerebral artery occlusion groups compared with the respective air groups in rats of both sexes (P<0.05). Thirty-two metabolites of carbohydrate, glycolysis, tricarboxylic acid cycle, and lipid metabolism were significantly altered (P≤0.05) due to EC, 23 of which were specific for females. Steady-state protein levels of hexokinase significantly decreased (P<0.05) in EC-exposed females; however, these changes were not seen in males. CONCLUSIONS Even brief EC exposure over 2 weeks impacts brain energy metabolism, exacerbates infarction, and worsens poststroke cognitive deficits in working memory more in female than male rats.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shahil H. Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ofelia Furones-Alonso
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Helen M. Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| |
Collapse
|
5
|
Pradhyumnan H, Perez GG, Patel SH, Blaya MO, Bramlett HM, Raval AP. A Perspective on Hormonal Contraception Usage in Central Nervous System Injury. J Neurotrauma 2024; 41:541-551. [PMID: 37975282 DOI: 10.1089/neu.2023.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Naturally occurring life stages in women are associated with changes in the milieu of endogenous ovarian hormones. Women of childbearing age may be exposed to exogenous ovarian hormone(s) because of their use of varying combinations of estrogen and progesterone hormones-containing oral contraceptives (OC; also known as "the pill"). If women have central nervous system (CNS) injury such as spinal cord injury (SCI) and traumatic brain injury (TBI) during their childbearing age, they are likely to retain their reproductive capabilities and may use OC. Many deleterious side effects of long-term OC use have been reported, such as aberrant blood clotting and endothelial dysfunction that consequently increase the risk of myocardial infarction, venous thromboembolism, and ischemic brain injury. Although controversial, studies have suggested that OC use is associated with neuropsychiatric ramifications, including uncontrollable mood swings and poorer cognitive performance. Our understanding about how the combination of endogenous hormones and OC-conferred exogenous hormones affect outcomes after CNS injuries remains limited. Therefore, understanding the impact of OC use on CNS injury outcomes needs further investigation to reveal underlying mechanisms, promote reporting in clinical or epidemiological studies, and raise awareness of possible compounded consequences. The goal of the current review is to discuss the impacts of CNS injury on endogenous ovarian hormones and vice-versa, as well as the putative consequences of exogenous ovarian hormones (OC) on the CNS to identify potential gaps in our knowledge to consider for future laboratory, epidemiological, and clinical studies.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Meghan O Blaya
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
6
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Hu J, Huang Y, Gao F, Sun W, Liu H, Ma H, Yuan T, Liu Z, Tang L, Ma Y, Zhang X, Bai J, Wang R. Brain-derived estrogen: a critical player in maintaining cognitive health of aged female rats, possibly involving GPR30. Neurobiol Aging 2023; 129:15-27. [PMID: 37257405 DOI: 10.1016/j.neurobiolaging.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Brain-derived estrogen is an endogenous neuroprotective agent, whether and how might this protective function with aging, especially postmenopausal drops in circulating estrogen, remain unclear. We herein subjected 6, 14, and 18 Mon female rats to mimic natural aging, and found that estrogen synthesis is more active in the healthy aged brain, as evidenced by the highest levels of mRNA and protein expression of aromatase, the key enzyme of E2 biosynthesis, among the three groups. Aromatase knockout in forebrain neurons (FBN-Aro-/-) impaired hippocampal and cortical neurons, and cognitive function in 18 Mon rats, compared to wild-type controls. Furthermore, estrogen nuclear receptors (ERα/β) displayed opposite changes, with a significant ERα decrease and ERβ increase, while membrane receptor GPR30 expressed stably in hippocampus during aging. Intriguingly, GPR30, but not ERα and ERβ, was decreased by FBN-Aro-/-. The results indicate that GPR30 is more sensitive to brain local E2 synthesis. Our findings provide evidence of a critical role for brain-derived estrogen in maintaining healthy brain function in older individuals, possibly involving GPR30.
Collapse
Affiliation(s)
- Jiewei Hu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Yuanyuan Huang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Fujia Gao
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Wuxiang Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Huiyu Liu
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Haoran Ma
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Tao Yuan
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Zixuan Liu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Lei Tang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Yuxuan Ma
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Xin Zhang
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Jing Bai
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| | - Ruimin Wang
- Neurobiology Institute, Key Laboratory of Dementia and Cognitive Dysfunction, School of Public Health of North China University of Science and Technology, Tangshan, Hebei, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, China.
| |
Collapse
|
8
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
9
|
Pradhyumnan H, Reddy V, Bassett ZQ, Patel SH, Zhao W, Dave KR, Perez-Pinzon MA, Bramlett HM, Raval AP. Post-stroke periodic estrogen receptor-beta agonist improves cognition in aged female rats. Neurochem Int 2023; 165:105521. [PMID: 36933865 DOI: 10.1016/j.neuint.2023.105521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Women have a higher risk of having an ischemic stroke and increased cognitive decline after stroke as compared to men. The female sex hormone 17β-estradiol (E2) is a potent neuro- and cognitive-protective agent. Periodic E2 or estrogen receptor subtype-beta (ER-β) agonist pre-treatments every 48 h before an ischemic episode ameliorated ischemic brain damage in young ovariectomized or reproductively senescent (RS) aged female rats. The current study aims to investigate the efficacy of post-stroke ER-β agonist treatments in reducing ischemic brain damage and cognitive deficits in RS female rats. Retired breeder (9-10 months) Sprague-Dawley female rats were considered RS after remaining in constant diestrus phase for more than a month. The RS rats were exposed to transient middle cerebral artery occlusion (tMCAO) for 90 min and treated with either ER-β agonist (beta 2, 3-bis(4-hydroxyphenyl) propionitrile; DPN; 1 mg/kg; s.c.) or DMSO vehicle at 4.5 h after induction of tMCAO. Subsequently, rats were treated with either ER-β agonist or DMSO vehicle every 48 h for ten injections. Forty-eight hours after the last treatment, animals were tested for contextual fear conditioning to measure post-stroke cognitive outcome. Neurobehavioral testing, infarct volume quantification, and hippocampal neuronal survival were employed to determine severity of stroke. Periodic post-stroke ER-β agonist treatment reduced infarct volume, improved recovery of cognitive capacity by increasing freezing in contextual fear conditioning, and decreased hippocampal neuronal death in RS female rats. These data suggest that periodic post-stroke ER-β agonist treatment to reduce stroke severity and improve post-stroke cognitive outcome in menopausal women has potential for future clinical investigation.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Zoe Q Bassett
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA.
| |
Collapse
|
10
|
Yamaguchi T, Miyamoto T, Shikata E, Yamaguchi I, Shimada K, Yagi K, Tada Y, Korai M, Kitazato KT, Kanematsu Y, Takagi Y. Activation of the NLRP3/IL-1β/MMP-9 pathway and intracranial aneurysm rupture associated with the depletion of ERα and Sirt1 in oophorectomized rats. J Neurosurg 2023; 138:191-198. [PMID: 35594890 DOI: 10.3171/2022.4.jns212945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Subarachnoid hemorrhage (SAH) due to intracranial aneurysm (IA) rupture is often a devastating event. Since the incidence of SAH increases especially in menopause, it is crucial to clarify the detailed pathogenesis of these events. The activation of vascular nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes has been studied in ischemic stroke and cardiovascular disease. However, the role of NLRP3 in IA rupture still needs to be explained. The authors sought to test their hypothesis that, under estrogen-deficient conditions, activation of NLRP3 inflammasomes via downregulation of the estrogen receptor (ER) facilitates IA rupture. METHODS Ten-week-old female Sprague Dawley rats with and without oophorectomy were subjected to hemodynamic changes and hypertension (OVX+/HT and OVX-/HT, respectively) and fed a high-salt diet. Separately, using human brain endothelial cells (HBECs) and human brain smooth muscle cells (HBSMCs), the authors tested the effect of NLRP3 under estrogen-free conditions and in the presence of estradiol or of ER agonists. RESULTS In OVX+/HT rats, the frequency of IA rupture was significantly higher than in OVX-/HT rats (p = 0.03). In the left posterior cerebral artery prone to rupture in OVX+/HT rats, the levels of the mRNAs encoding ERα and Sirt1, but not of that encoding ERβ, were decreased, and the levels of the mRNAs encoding NLRP3, interleukin-1β (IL-1β), and matrix metalloproteinase 9 (MMP-9) were elevated. Immunohistochemical analysis demonstrated that the expression profiles of these proteins correlated with their mRNA levels. Treatment with an ER modulator, bazedoxifene, normalized the expression profiles of these proteins and improved SAH-free survival. In HBECs and HBSMCs under estrogen-free conditions, the depletion of ERα and Sirt1 and the accumulation of NLRP3 were counteracted by exposure to estradiol or to an ERα agonist but not to an ERβ agonist. CONCLUSIONS To the authors' knowledge, this work represents the first demonstration that, in an aneurysm model under estrogen-deficient conditions, the depletion of ERα and Sirt1 may contribute to activation of the NLRP3/IL-1β/MMP-9 pathway, facilitating the rupture of IAs in the estrogen-deficient rat IA rupture model.
Collapse
|
11
|
Kerr N, Sanchez J, Moreno WJ, Furones-Alonso OE, Dietrich WD, Bramlett HM, Raval AP. Post-stroke low-frequency whole-body vibration improves cognition in middle-aged rats of both sexes. Front Aging Neurosci 2022; 14:942717. [PMID: 36062148 PMCID: PMC9428155 DOI: 10.3389/fnagi.2022.942717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Low-frequency whole-body vibration (WBV; 40 Hz), a low impact form of exercise, intervention for a month following moderate transient middle-cerebral artery occlusion (tMCAO) reduces infarct volume and improves motor function in reproductively senescent, middle-aged female rats. Since post-stroke cognitive decline remains a significant problem, the current study aims to investigate the efficacy of WBV in ameliorating post-tMCAO cognitive deficits and to determine the underlying putative mechanism(s) conferring benefits of WBV in middle-aged rats. Middle-aged rats of both sexes were randomly assigned to tMCAO (90 min) or sham surgery followed by exposure to either WBV (twice a day for 15 min each for 5 days a week over a month) or no WBV treatment groups. Following the last WBV treatment, rats were tested for hippocampus-dependent learning and memory using a water maze followed by harvesting brain and blood samples for histopathological and inflammatory marker analyses, respectively. Results show that post-tMCAO WBV significantly lessens cognitive deficits in rats of both sexes. Post-tMCAO WBV significantly decreased circulating pro-inflammatory cytokines and increased serum levels of irisin, a muscle-derived hormone that may play a role in brain metabolism and inflammation regulation, which suggests putative beneficial mechanisms of WBV.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Juliana Sanchez
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - William Javier Moreno
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ofelia E. Furones-Alonso
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - W. Dalton Dietrich
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Helen M. Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, United States
- *Correspondence: Helen M. Bramlett,
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Ami P. Raval,
| |
Collapse
|
12
|
Li Z, Qi C, Jia Z, Zhen R, Ren L, Jia Y, Chen S. The Correlation Between Estimated Glucose Disposal Rate and Coagulation Indexes in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:2643-2652. [PMID: 36071794 PMCID: PMC9441581 DOI: 10.2147/dmso.s371457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To study the correlation between estimated glucose disposition rate (eGDR) and coagulation parameters in type 2 diabetes patients (T2DM). MATERIALS AND METHODS A total of 948 patients suffering from T2DM were enrolled for this research. Various blood coagulation parameters including prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen (FIB) were assessed. Body mass index (BMI), hypertension, and the levels of glycated hemoglobin (HbA1c) were used to calculate the patients' eGDRs. All patients were sorted into two groups: those with high eGDRs (eGDR≥7.5) and those with low eGDRs (eGDR<7.5). The patients were then separated into groups of men and women. The connection between eGDR and coagulation indexes was examined using Spearman correlation, Pearson correlation, and multiple linear regression analysis. RESULTS In comparison to the high-eGDR group, reduced PT and APTT levels with increased FIB levels were observed in the low-eGDR group (P =0.006, P <0.001, and P = 0.035, respectively). The eGDR showed a positive relation with APTT (r = 0.142, P < 0.001), a negative relation with FIB (r = -0.082, P = 0.012), and no correlation with PT (r =0.064, P =0.050) in the all patients. As well as, the eGDR demonstrated a positive relation with APTT (r = 0.173, P < 0.001), a negative relation with FIB (r = -0.093, P = 0.03), and no relation with PT (r = 0.045, P = 0.300) in the male subgroups. Additionally, this correlation persisted following the adjustment of other factors in multilinear regression analysis. However, the female subgroup demonstrated no correlation among eGDR and PT, APTT or FIB (r = 0.086, P = 0.083, r = 0.097, P = 0.05;r = -0.058, P = 0.240, respectively). CONCLUSION Our study is the first to prove that eGDR demonstrates a correlation with coagulation indexes in T2DM patients. And, this correlation is gender-specific.
Collapse
Affiliation(s)
- Zelin Li
- Graduate School of Hebei Medical University, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, People’s Republic of China
| | - Cuijuan Qi
- Graduate School of Hebei Medical University, People’s Republic of China
| | - Zhuoya Jia
- Graduate School of Hebei Medical University, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, People’s Republic of China
| | - Ruoxi Zhen
- Graduate School of Hebei Medical University, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, People’s Republic of China
| | - Lin Ren
- Graduate School of Hebei Medical University, People’s Republic of China
- North China University of Science and Technology, People’s Republic of China
| | - Yujiao Jia
- Graduate School of Hebei Medical University, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, People’s Republic of China
| | - Shuchun Chen
- Graduate School of Hebei Medical University, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, People’s Republic of China
- Correspondence: Shuchun Chen, Department of Endocrinology, Hebei General Hospital, 348 Heping West Road, 050051, People’s Republic of China, Tel +86 031185988406, Fax +86 031185988406, Email
| |
Collapse
|
13
|
Reddy V, McCarthy M, Raval AP. Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiol Dis 2021; 163:105596. [PMID: 34942334 DOI: 10.1016/j.nbd.2021.105596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Xenoestrogens, foreign synthetic chemicals mimicking estrogens, are lurking in our surroundings. Climate change may alter their toxicity and bioavailability. Since xenoestrogens have extremely high lipid solubility and are structurally similar to natural endogenous estrogens, they can bind to estrogen receptors (ERs) -alpha (ER-α) and -beta (ER-β). Scientific evidence accumulated over the past decades have suggested that natural 17β-estradiol (E2; a potent estrogen), via activation of its receptors, plays a pivotal role in regulation of brain development, differentiation, metabolism, synaptic plasticity, neuroprotection, cognition, anxiety, body temperature, feeding and sexual behavior. In the brain, ER-β is predominantly expressed in the various regions, including cerebral cortex and hippocampus, that have been shown to play a key role in cognition. Therefore, disturbances in function of ER-β mediated E2 signaling by xenoestrogens can lead to deleterious effects that potentiate a variety of neurological diseases starting from prenatal to post-menopause in women. The goal of this review is to identify the possible neurological effects of xenoestrogens that can alter estrogen receptor-mediated signaling in the brain during different stages of the female lifespan.
Collapse
Affiliation(s)
- Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
14
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. Tamoxifen offers long-term neuroprotection after hippocampal silent infarct in male rats. Horm Behav 2021; 136:105085. [PMID: 34749277 DOI: 10.1016/j.yhbeh.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.
Collapse
|
15
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. The selective estrogen receptor modulator tamoxifen protects against subtle cognitive decline and early markers of injury 24 h after hippocampal silent infarct in male Sprague-Dawley rats. Horm Behav 2021; 134:105016. [PMID: 34242875 DOI: 10.1016/j.yhbeh.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts occurring in the absence of typical ischemia symptoms and are linked to cognitive decline and dementia development. There are no approved treatments for SI. One potential treatment is tamoxifen, a selective estrogen receptor modulator. It is critical to establish whether treatments effectively target the early consequences of SI to avoid progression to complete injury. We induced SI in the dorsal hippocampal CA1 of rats and assessed whether tamoxifen is protective 24 h later against cognitive deficits and injury responses including gliosis, apoptosis, inflammation and changes in estrogen receptors (ERs). SI led to subtle cognitive impairment on the object place task, an effect ameliorated by tamoxifen administration. SI did not lead to detectable hippocampal cell loss but increased apoptosis, astrogliosis, microgliosis and inflammation. Tamoxifen protected against the effects of SI on all measures except microgliosis. SI increased ERα and decreased ERβ in the hippocampus, which were mitigated by tamoxifen. Exploratory data analyses using scatterplot matrices and principal component analysis indicated that SI rats given tamoxifen were indistinguishable from controls. Further, SI rats were significantly different from all other groups, an effect associated with low levels of ERα and increased apoptosis, gliosis, inflammation, ERβ, and time spent with the unmoved object. The results demonstrate that tamoxifen is protective against the early cellular and cognitive consequences of hippocampal SI 24 h after injury. Tamoxifen mitigates apoptosis, gliosis, and inflammation and normalization of ER levels in the CA1, leading to improved cognitive outcomes after hippocampal SI.
Collapse
|
16
|
Huberman MA, d'Adesky ND, Niazi QB, Perez-Pinzon MA, Bramlett HM, Raval AP. Irisin-Associated Neuroprotective and Rehabilitative Strategies for Stroke. Neuromolecular Med 2021; 24:62-73. [PMID: 34215971 DOI: 10.1007/s12017-021-08666-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/19/2021] [Indexed: 10/20/2022]
Abstract
Irisin, a newly discovered protein hormone that is secreted in response to low frequency whole body vibration (LFV), could be a promising post-stroke rehabilitation therapy for patients who are frail and cannot comply with regular rehabilitation therapy. Irisin is generated from a membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5). Aside from being highly expressed in muscle, FNDC5 is highly expressed in the brain. The cleaved form of FNDC5 was found in the cerebrospinal fluid as well as in various regions of the brain. Numerous studies suggest that irisin plays a key role in brain metabolism and inflammation regulation. Both the metabolism and inflammation govern stroke outcome, and in a published study, we demonstrated that LFV therapy following middle cerebral artery occlusion significantly reduced innate immune response, improved motor function and infarct volume in reproductively senescent female rats. The observed effect of LFV therapy could be working via irisin, therefore, the current review focuses to understand various aspects of irisin including its mechanism of action on the brain.
Collapse
Affiliation(s)
- Melissa Ann Huberman
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nathan D d'Adesky
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Qismat Bahar Niazi
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
17
|
Ali M, Gupta M, Wani A, Sharma A, Abdullaha M, Kour D, Choudhary S, Bharate SB, Singh G, Kumar A. IIIM-941, a Stilbene Derivative Inhibits NLRP3 Inflammasome Activation by Inducing Autophagy. Front Pharmacol 2021; 12:695712. [PMID: 34248643 PMCID: PMC8267097 DOI: 10.3389/fphar.2021.695712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Aberrant activation of NLRP3 inflammasome has been implicated in several inflammatory diseases. Autophagy is one of the primary mechanisms that regulate NLRP3 inflammasome activity. In this study, we attempted to target NLRP3 inflammasome activity by a synthetic compound IIIM-941. We found that IIIM-941 inhibits ATP induced NLRP3 inflammasome by induction of autophagy through AMPK pathway in bone marrow derived macrophages (BMDMs) and J774A.1 cells. It was interesting to observe that IIIM-941 did not show any inhibitory activity against LPS induced pro-inflammatory cytokines TNF-α and IL-6. The anti-NLRP3 activity of IIIM-941 was significantly reversed when we attempted to block autophagy by using either pharmacological inhibitor bafilomycin A1or by using siRNA against AMPK. Further, we found that IIIM-941 downregulated the expression of NLRP3 and prevented the oligomerization of ASC to exert its anti-NLRP3 inflammasome effect in J774A.1 cells. We validated inhibitory activity of IIIM-941 against NLRP3 in three different mice models. The anti-inflammatory effect of IIIM-941 was highly significant in ATP induced peritoneal inflammation model. IIIM-941 was similarly effective in suppressing MSU induced IL-1β in the air pouch model of inflammation without affecting the levels of TNF-α and IL-6. Finally, oral efficacy of IIIM-941 was also proved in MSU indued foot paw edema model of inflammation in mice at 10 and 20 mg/kg (b.w.). The compounds like IIIM-941 can be explored further for the development of therapies against diseases such as Alzheimer's disease and Parkinson's disease, where hampered autophagy and NLRP3 activation play a crucial role in the pathological development.
Collapse
Affiliation(s)
- Mehboob Ali
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehak Gupta
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abubakar Wani
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Department of Immunology, St Jude Children’s Hospital, Memphis, TN, United States
| | - Ankita Sharma
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Abdullaha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilpreet Kour
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sushil Choudhary
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sandip B. Bharate
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gurdarshan Singh
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajay Kumar
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Menze ET, Ezzat H, Shawky S, Sami M, Selim EH, Ahmed S, Maged N, Nadeem N, Eldash S, Michel HE. Simvastatin mitigates depressive-like behavior in ovariectomized rats: Possible role of NLRP3 inflammasome and estrogen receptors' modulation. Int Immunopharmacol 2021; 95:107582. [PMID: 33774267 DOI: 10.1016/j.intimp.2021.107582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
It is well known that females are more vulnerable than males to stress-related psychiatric disorders, particularly during perimenopausal and postmenopausal periods. Hormone replacement therapy (HRT) has been widely used for the management of postmenopausal depression. However, HRT could be associated with severe adverse effects, including increased risk for coronary heart disease, breast cancer and endometrial cancer. Thus, there is a pressing demand for novel therapeutic options for postmenopausal depression without sacrificing uterine health. Simvastatin (SIM) was proven to have neuroprotective activities besides its hypocholesterolemic effect, the former can be attributed to its, antioxidant, anti-apoptotic and anti-inflammatory activities. Moreover, many reports highlighted that SIM has estrogenic activity and was able to induce the expression of estrogen receptors in rats. The present study showed that SIM (20 mg/kg, p.o.) markedly attenuated depressive-like behavior in ovariectomized (OVX) rats. Moreover, SIM prohibited hippocampal microglial activation, abrogated P2X7 receptor, TLR2 and TLR4 expression, inhibited NLRP3 inflammasome activation, with subsequent reduction in the levels of pro-inflammatory mediators; IL-1β and IL-18. Furthermore, a marked elevation in hippocampal expression of ERα and ERβ was noted in SIM-treated animals, without any significant effect on uterine relative weight or ERα expression. Taken together, SIM could provide a safer alternative for HRT for the management of postmenopausal depression, without any hyperplastic effect on the uterus.
Collapse
Affiliation(s)
- Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hager Ezzat
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Salma Shawky
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa Sami
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman H Selim
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Ahmed
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Maged
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nancy Nadeem
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
19
|
Zearalenone and the Immune Response. Toxins (Basel) 2021; 13:toxins13040248. [PMID: 33807171 PMCID: PMC8066068 DOI: 10.3390/toxins13040248] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic fusariotoxin, being classified as a phytoestrogen, or as a mycoestrogen. ZEA and its metabolites are able to bind to estrogen receptors, 17β-estradiol specific receptors, leading to reproductive disorders which include low fertility, abnormal fetal development, reduced litter size and modification at the level of reproductive hormones especially in female pigs. ZEA has also significant effects on immune response with immunostimulatory or immunosuppressive results. This review presents the effects of ZEA and its derivatives on all levels of the immune response such as innate immunity with its principal component inflammatory response as well as the acquired immunity with two components, humoral and cellular immune response. The mechanisms involved by ZEA in triggering its effects are addressed. The review cited more than 150 publications and discuss the results obtained from in vitro and in vivo experiments exploring the immunotoxicity produced by ZEA on different type of immune cells (phagocytes related to innate immunity and lymphocytes related to acquired immunity) as well as on immune organs. The review indicates that despite the increasing number of studies analyzing the mechanisms used by ZEA to modulate the immune response the available data are unsubstantial and needs further works.
Collapse
|
20
|
Boltze J, Aronowski JA, Badaut J, Buckwalter MS, Caleo M, Chopp M, Dave KR, Didwischus N, Dijkhuizen RM, Doeppner TR, Dreier JP, Fouad K, Gelderblom M, Gertz K, Golubczyk D, Gregson BA, Hamel E, Hanley DF, Härtig W, Hummel FC, Ikhsan M, Janowski M, Jolkkonen J, Karuppagounder SS, Keep RF, Koerte IK, Kokaia Z, Li P, Liu F, Lizasoain I, Ludewig P, Metz GAS, Montagne A, Obenaus A, Palumbo A, Pearl M, Perez-Pinzon M, Planas AM, Plesnila N, Raval AP, Rueger MA, Sansing LH, Sohrabji F, Stagg CJ, Stetler RA, Stowe AM, Sun D, Taguchi A, Tanter M, Vay SU, Vemuganti R, Vivien D, Walczak P, Wang J, Xiong Y, Zille M. New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Front Aging Neurosci 2021; 13:623751. [PMID: 33584250 PMCID: PMC7876251 DOI: 10.3389/fnagi.2021.623751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Jaroslaw A. Aronowski
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome Badaut
- NRS UMR 5287, INCIA, Brain Molecular Imaging Team, University of Bordeaux, Bordeaux cedex, France
| | - Marion S. Buckwalter
- Departments of Neurology and Neurological Sciences, and Neurosurgery, Wu Tsai Neurosciences Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Mateo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens P. Dreier
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta, Edmonton, AB, Canada
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Gertz
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara A. Gregson
- Neurosurgical Trials Group, Institute of Neuroscience, The University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University, Baltimore, MD, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Friedhelm C. Hummel
- Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jukka Jolkkonen
- Department of Neurology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saravanan S. Karuppagounder
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Inga K. Koerte
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fudong Liu
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerlinde A. S. Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Alex Palumbo
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Monica Pearl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miguel Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna M. Planas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Àrea de Neurociències, Barcelona, Spain
- Department d’Isquèmia Cerebral I Neurodegeneració, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich University Hospital, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria A. Rueger
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, United States
| | - Charlotte J. Stagg
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - R. Anne Stetler
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurotherapeutics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Dandan Sun
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, PA, United States
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France
| | - Sabine U. Vay
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Denis Vivien
- UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Normandy University, Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jian Wang
- Department of Human Anatomy, College of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
McCarthy M, Raval AP. The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation 2020; 17:317. [PMID: 33097048 PMCID: PMC7585188 DOI: 10.1186/s12974-020-01998-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen receptor-beta has been shown to regulate a key component of the innate immune response known as the inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will present an overview of the menopausal transition as an inflammatory event, with associated systemic and central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
Collapse
Affiliation(s)
- Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, 1420 NW 9th Avenue, Neurology Research Building, Room # 203H, Miami, FL, 33136, USA. .,Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
22
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
23
|
The expressions of NLRP1, NLRP3, and AIM2 inflammasome complexes in the contusive spinal cord injury rat model and their responses to hormonal therapy. Cell Tissue Res 2020; 381:397-410. [DOI: 10.1007/s00441-020-03250-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
|
24
|
Loss of Estrogen Efficacy Against Hippocampus Damage in Long-Term OVX Mice Is Related to the Reduction of Hippocampus Local Estrogen Production and Estrogen Receptor Degradation. Mol Neurobiol 2020; 57:3540-3551. [PMID: 32542593 DOI: 10.1007/s12035-020-01960-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Postmenopausal women experience a higher risk for neurodegenerative diseases, including cognitive impairment and ischemic stroke. Many preclinical studies have indicated that estrogen replacement therapy (ERT) may provide protective effects against these neurological diseases. However, the results of Women's Health Initiative (WHI) studies have led to the proposal of "critical period hypothesis," which states that there is a precise window of opportunity for administering beneficial hormone therapy following menopause. However, the underlying molecular mechanisms require further characterization. Here, we explored the effects of ERT on cognition decline and global cerebral ischemia (GCI)-induced hippocampal neuronal damage in mice that had experienced both short-term (ovariectomized (OVX) 1 week) and long-term (OVX 10 weeks) estrogen deprivation. We also further explored the concentration of 17β-estradiol (E2) in the circulation and hippocampus and the expression of aromatase and estrogen receptors (ERα, ERα-Ser118, and ERβ). We found that the neuroprotective effectiveness of ERT against hippocampus damage exhibited in OVX1w mice was totally absent in OVX10w mice. Interestingly, the concentration of hippocampal E2 was irreversibly reduced in OVX10w mice, which was related to the decrease of aromatase expression in the hippocampus. In addition, long-term estrogen deprivation (LTED) led to a decrease in estrogen receptor proteins in the hippocampus. Thus, we concluded that the loss of ERT neuroprotection against hippocampus injury in LTED mice was related to the reduction in hippocampus E2 production and estrogen receptor degradation. These results provide several intervention targets to restore the effectiveness of ERT neuroprotection in elderly post-menopausal women.
Collapse
|
25
|
Kerr N, Dietrich DW, Bramlett HM, Raval AP. Sexually dimorphic microglia and ischemic stroke. CNS Neurosci Ther 2019; 25:1308-1317. [PMID: 31747126 PMCID: PMC6887716 DOI: 10.1111/cns.13267] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke kills more women compared with men thus emphasizing a significant sexual dimorphism in ischemic pathophysiological outcomes. However, the mechanisms behind this sexual dimorphism are yet to be fully understood. It is well established that cerebral ischemia activates a variety of inflammatory cascades and that microglia are the primary immune cells of the brain. After ischemic injury, microglia are activated and play a crucial role in progression and resolution of the neuroinflammatory response. In recent years, research has focused on the role that microglia play in this sexual dimorphism that exists in the response to central nervous system (CNS) injury. Evidence suggests that the molecular mechanisms leading to microglial activation and polarization of phenotypes may be influenced by sex, therefore causing a difference in the pro/anti‐inflammatory responses after CNS injury. Here, we review advances highlighting that sex differences in microglia are an important factor in the inflammatory responses that are seen after ischemic injury. We discuss the main differences between microglia in the healthy and diseased developing, adult, and aging brain. We also focus on the dimorphism that exists between males and females in microglial‐induced inflammation and energy metabolism after CNS injury. Finally, we describe how all of the current research and literature regarding sex differences in microglia contribute to the differences in poststroke responses between males and females.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dalton W Dietrich
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
26
|
Cohan CH, Youbi M, Saul I, Ruiz AA, Furones CC, Patel P, Perez E, Raval AP, Dave KR, Zhao W, Dong C, Rundek T, Koch S, Sacco RL, Perez-Pinzon MA. Sex-Dependent Differences in Physical Exercise-Mediated Cognitive Recovery Following Middle Cerebral Artery Occlusion in Aged Rats. Front Aging Neurosci 2019; 11:261. [PMID: 31619985 PMCID: PMC6759590 DOI: 10.3389/fnagi.2019.00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/04/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke remains a leading cause of death and disability in the United States. No current treatments exist to promote cognitive recovery in survivors of stroke. A previous study from our laboratory determined that an acute bout of forced treadmill exercise was able to promote cognitive recovery in 3 month old male rats after middle cerebral artery occlusion (MCAo). In this study, we tested the hypothesis that 6 days of intense acute bout of forced treadmill exercise (physical exercise – PE) promotes cognitive recovery in 11–14 month old male rats. We determined that PE was able to ameliorate cognitive deficits as determined by contextual fear conditioning. Additionally, we also tested the hypothesis that PE promotes cognitive recovery in 11–13 month old reproductive senescent female rats. In contrast to males, the same intensity of exercise that decrease cognitive deficits in males was not able to promote cognitive recovery in female rats. Additionally, we determined that exercise did not lessen infarct volume in both male and female rats. There are many factors that contribute to higher stroke mortality and morbidities in women and thus, future studies will investigate the effects of PE in aged female rats to identify sex differences.
Collapse
Affiliation(s)
- Charles H Cohan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mehdi Youbi
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alex A Ruiz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Concepcion C Furones
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pujan Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Edwin Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Weizhao Zhao
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chuanhui Dong
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tatjana Rundek
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sebastian Koch
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ralph L Sacco
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
27
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
28
|
Pirzad Jahromi G, Imani E, Nasehi M, Shahriari A. Effect of Achillea millefolium aqueous extract on memory deficit and anxiety caused by stroke in ovariectomized rats. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction: Some studies indicated that the decrease of estrogen level in menopausal woman results in increasing the risk of stroke. Although estrogen is a neuroprotective factor, high consumption of this compound may develop breast cancer and endometriosis. The present study investigated the effect of Achilles millefolium extract, containing estrogenlike compounds, on memory impairment and anxiogenic-like behaviors caused by cerebral ischemia in ovariectomized rats. Methods: Permanent middle cerebral artery ligation was performed, as a model for studying postmenopausal condition, in 48 female Wistar rats weighing 200-250 g. The aqueous extract of A. millefolium was prepared and gavaged for 4 weeks after inducing cerebral ischemia. Memory and anxiety-like behavior assessments were evaluated by step-through and elevated plus maze apparatus, respectively. Result: According to the results, cerebral ischemia in ovariectomized rats induced amnesia and anxiogenic-like behaviors which were restored by 7 mg/kg of A. millefolium aqueous extract. Furthermore, inactivation of estrogen receptors (ERs) by tamoxifen (100 µg/kg, intraperitoneally) blocked the restoration effect of A. millefolium on behaviors induced by cerebral ischemia. Conclusion: It could be concluded that, oral administration of A. millefolium extract is able to restore memory impairment and anxiogenic-like behaviors induced by ischemia via ERs in ovariectomized rat.
Collapse
Affiliation(s)
- Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Esmail Imani
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Shahriari
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mohamadi Y, Mousavi M, Khanbabaei H, Salarinia R, Javankiani S, Hassanzadeh G, Momeni F. The role of inflammasome complex in ischemia-reperfusion injury. J Cell Biochem 2018. [PMID: 30548879 DOI: 10.1002/jcb.27368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022]
Abstract
Ischemia-reperfusion injury refers to a temporary interruption of blood flow in a tissue. Restoration of blood flow initiates the inflammation in tissue causing ischemic damage through the activation of a multiprotein complex termed inflammasome. The complex contains a receptor, mainly a member of nucleotide oligomerization domain-like receptors, that receives danger signals. The receptor is oligomerized as a response to danger signals and then the apoptosis-associated speck-like protein containing a caspase recruitment domain and procaspase protein are added to the oligomerized receptors to form the inflammasome complex. In the next step, the isolated procaspase is converted into an active caspase molecule that initiates the inflammation through the release of interleukin-1β and interleukin-18. The inflammasome has an important role in the pathogenesis of ischemia-reperfusion injury in different tissues. Here, we summarized the role of inflammasome in the pathogenesis of ischemia-reperfusion of brain, liver, kidney, and heart. Moreover, we highlighted the expression of inflammasome components, the mechanisms involved in activation of the complex, and its inhibition as an optimistic therapeutic technique in ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Yousef Mohamadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hashem Khanbabaei
- Radiobiology Laboratory, Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sepide Javankiani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeni
- Health research institute,, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Raval AP, Martinez CC, Mejias NH, de Rivero Vaccari JP. Sexual dimorphism in inflammasome-containing extracellular vesicles and the regulation of innate immunity in the brain of reproductive senescent females. Neurochem Int 2018; 127:29-37. [PMID: 30500463 DOI: 10.1016/j.neuint.2018.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
A woman's risk for stroke increases exponentially following the onset of menopause; however, the underlying mechanisms responsible for the increased risk remain unknown. The depletion of endogenous estrogen at menopause is known to activate the inflammatory response. Therefore, in this study we have used reproductively senescent (RS) rats to test the hypotheses that (1) inflammasome activation is significantly higher in the brain of RS females (RSF) as compared to their younger counterparts and age-matched senescent male rats, and that (2) RS triggers an innate immune response mediated in part by inflammasome-containing extracellular vesicles (EV) that originate in the female reproductive organs and then spreads to the brain. We tested these hypotheses using male and female Sprague-Dawley rats (Young: 6-7 months and RS: 9-13 months). Hippocampus, gonads and serum were collected. Additionally, cerebrospinal fluid (CSF) of pre- and post-menopausal women (ages 23 to 37 and 52 to 68) was purchased and extracellular vesicles (EV) were isolated from serum and CSF. The Inflammasome proteins caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and IL-1β were then resolved by immunoblotting. We found that inflammasome protein expression increased significantly in the analyzed tissues in RSF as compared to young females (YF), such difference was not present in age-matched male rat brains. Interestingly, we found that Nik-related kinase (NRK), which is present in female reproductive organs was present in the CSF and serum-derived EV, suggesting that the source of the EV seen in the brain during RS/menopause originate, in part, in the female reproductive organs. Thus, this study shows for the first time an involvement of the inflammasome originating in the female reproductive system as a contributor to inflammation in the brain that makes the peri-menopausal women's brain more susceptible to neurodegenerative diseases such as stroke.
Collapse
Affiliation(s)
- Ami P Raval
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Camila C Martinez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nancy H Mejias
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
31
|
Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. Int J Mol Sci 2018; 19:ijms19092749. [PMID: 30217051 PMCID: PMC6164360 DOI: 10.3390/ijms19092749] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
A risk of ischemic stroke increases exponentially after menopause. Even a mild-ischemic stroke can result in increased frailty. Frailty is a state of increased vulnerability to adverse outcomes, which subsequently increases risk of cerebrovascular events and severe cognitive decline, particularly after menopause. Several interventions to reduce frailty and subsequent risk of stroke and cognitive decline have been proposed in laboratory animals and patients. One of them is whole body vibration (WBV). WBV improves cerebral function and cognitive ability that deteriorates with increased frailty. The goal of the current study is to test the efficacy of WBV in reducing post-ischemic stroke frailty and brain damage in reproductively senescent female rats. Reproductively senescent Sprague-Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO) and were randomly assigned to either WBV or no-WBV groups. Animals placed in the WBV group underwent 30 days of WBV (40 Hz) treatment performed twice daily for 15 min each session, 5 days each week. The motor functions of animals belonging to both groups were tested intermittently and at the end of the treatment period. Brains were then harvested for inflammatory markers and histopathological analysis. The results demonstrate a significant reduction in inflammatory markers and infarct volume with significant increases in brain-derived neurotrophic factor and improvement in functional activity after tMCAO in middle-aged female rats that were treated with WBV as compared to the no-WBV group. Our results may facilitate a faster translation of the WBV intervention for improved outcome after stroke, particularly among frail women.
Collapse
|
32
|
Kerr N, García-Contreras M, Abbassi S, Mejias NH, Desousa BR, Ricordi C, Dietrich WD, Keane RW, de Rivero Vaccari JP. Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Front Mol Neurosci 2018; 11:309. [PMID: 30233311 PMCID: PMC6131639 DOI: 10.3389/fnmol.2018.00309] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammasome is a key contributor to the inflammatory innate immune response after stroke. We have previously shown that inflammasome proteins are released in extracellular vesicles (EV) after brain and spinal cord injury. In addition, we have shown that inflammasome proteins offer great promise as biomarkers of central nervous system (CNS) injury following brain trauma. In the present study, we used a Simple Plex Assay (Protein Simple), a novel multi-analyte automated microfluidic immunoassay platform, to analyze serum and serum-derived EV samples from stroke patients and control subjects for inflammasome protein levels of caspase-1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), Interleukins (IL)-1β, and (IL)-18. Receiver operator characteristic (ROC) curves with associated confidence intervals obtained from the analysis of serum samples revealed that the area under the curve (AUC) for ASC was 0.99 with a confidence interval between 0.9914 and 1.004, whereas the AUC for caspase-1, IL-1β, and IL-18 were 0.75, 0.61, and 0.67, respectively. Thus, these data indicate that ASC is a potential biomarker of stroke and highlight the role of the inflammasome in the inflammatory response after brain ischemia.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Marta García-Contreras
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sam Abbassi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| | - Nancy H Mejias
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Brandon R Desousa
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| |
Collapse
|
33
|
Tuncel AT, Boy N, Morath MA, Hörster F, Mütze U, Kölker S. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 2018; 41:765-776. [PMID: 29335813 DOI: 10.1007/s10545-017-0135-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marina A Morath
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
34
|
d'Adesky ND, de Rivero Vaccari JP, Bhattacharya P, Schatz M, Perez-Pinzon MA, Bramlett HM, Raval AP. Nicotine Alters Estrogen Receptor-Beta-Regulated Inflammasome Activity and Exacerbates Ischemic Brain Damage in Female Rats. Int J Mol Sci 2018; 19:ijms19051330. [PMID: 29710856 PMCID: PMC5983576 DOI: 10.3390/ijms19051330] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Smoking is a preventable risk factor for stroke and smoking-derived nicotine exacerbates post-ischemic damage via inhibition of estrogen receptor beta (ER-β) signaling in the brain of female rats. ER-β regulates inflammasome activation in the brain. Therefore, we hypothesized that chronic nicotine exposure activates the inflammasome in the brain, thus exacerbating ischemic brain damage in female rats. To test this hypothesis, adult female Sprague-Dawley rats (6–7 months old) were exposed to nicotine (4.5 mg/kg/day) or saline for 16 days. Subsequently, brain tissue was collected for immunoblot analysis. In addition, another set of rats underwent transient middle cerebral artery occlusion (tMCAO; 90 min) with or without nicotine exposure. One month after tMCAO, histopathological analysis revealed a significant increase in infarct volume in the nicotine-treated group (64.24 ± 7.3 mm3; mean ± SEM; n = 6) compared to the saline-treated group (37.12 ± 7.37 mm3; n = 7, p < 0.05). Immunoblot analysis indicated that nicotine increased cortical protein levels of caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC) and pro-inflammatory cytokines interleukin (IL)-1β by 88% (p < 0.05), 48% (p < 0.05) and 149% (p < 0.05), respectively, when compared to the saline-treated group. Next, using an in vitro model of ischemia in organotypic slice cultures, we tested the hypothesis that inhibition of nicotine-induced inflammasome activation improves post-ischemic neuronal survival. Accordingly, slices were exposed to nicotine (100 ng/mL; 14–16 days) or saline, followed by treatment with the inflammasome inhibitor isoliquiritigenin (ILG; 24 h) prior to oxygen-glucose deprivation (OGD; 45 min). Quantification of neuronal death demonstrated that inflammasome inhibition significantly decreased nicotine-induced ischemic neuronal death. Overall, this study shows that chronic nicotine exposure exacerbates ischemic brain damage via activation of the inflammasome in the brain of female rats.
Collapse
Affiliation(s)
- Nathan D d'Adesky
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA.
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Pallab Bhattacharya
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA.
| | - Marc Schatz
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA.
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA.
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA.
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, USA.
| | - Ami P Raval
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA.
| |
Collapse
|
35
|
Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW. 17 β-Estradiol Regulates Microglia Activation and Polarization in the Hippocampus Following Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4248526. [PMID: 29849895 PMCID: PMC5932444 DOI: 10.1155/2018/4248526] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective hormone, but its role in regulation of neuroinflammation is less understood. Recently, our lab demonstrated that E2 could regulate the NLRP3 (NOD-like receptor protein 3) inflammasome pathway in the hippocampus following global cerebral ischemia (GCI). Here, we examined the ability of E2 to regulate activation and polarization of microglia phenotype in the hippocampus after global cerebral ischemia (GCI). Our in vivo study in young adult ovariectomized rats showed that exogenous low-dose E2 profoundly suppressed microglia activation and quantitatively shifted microglia from their "activated," amoeboid morphology to a "resting," ramified morphology after GCI. Further studies using M1 "proinflammatory" and M2 "anti-inflammatory" phenotype markers showed that E2 robustly suppressed the "proinflammatory" M1 phenotype, while enhancing the "anti-inflammatory" M2 microglia phenotype in the hippocampus after GCI. These effects of E2 may be mediated directly upon microglia, as E2 suppressed the M1 while enhancing the M2 microglia phenotype in LPS- (lipopolysaccharide-) activated BV2 microglia cells in vitro. E2 also correspondingly suppressed proinflammatory while enhancing anti-inflammatory cytokine gene expression in the LPS-treated BV2 microglia cells. Finally, E2 treatment abolished the LPS-induced neurotoxic effects of BV2 microglia cells upon hippocampal HT-22 neurons. Collectively, our study findings suggest a novel E2-mediated neuroprotective effect via regulation of microglia activation and promotion of the M2 "anti-inflammatory" phenotype in the brain.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, USA
| | - Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
36
|
Bix GJ, Fraser JF, Mack WJ, Carmichael ST, Perez-Pinzon M, Offner H, Sansing L, Bosetti F, Ayata C, Pennypacker KR. Uncovering the Rosetta Stone: Report from the First Annual Conference on Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical. Transl Stroke Res 2018; 9:258-266. [PMID: 29633156 PMCID: PMC5982459 DOI: 10.1007/s12975-018-0628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 01/12/2023]
Abstract
The first annual Stroke Translational Research Advancement Workshop (STRAW), entitled “Uncovering the Rosetta Stone: Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical” was held at the University of Kentucky on October 4–5, 2017. This workshop was organized by the Center for Advanced Translational Stroke Science. The workshop consisted of 2 days of activities. These included three presentations establishing the areas of research in stroke therapeutics, discussing the routes for translation from bench to bedside, and identifying successes and failures in the field. On day 2, grant funding opportunities and goals for the National Institute for Neurological Diseases and Stroke were presented. In addition, the meeting also included break-out sessions designed to connect researchers in areas of stroke, and to foster potential collaborations. Finally, the meeting concluded with an open discussion among attendees led by a panel of experts.
Collapse
Affiliation(s)
- Gregory J Bix
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA.,Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - William J Mack
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Miguel Perez-Pinzon
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,Department of Anesthesiology, Oregon Health & Science University, Portland, Oregon, USA.,Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lauren Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA. .,Department of Neurology, University of Kentucky, Lexington, KY, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
37
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
38
|
Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 2018; 8:36973-36983. [PMID: 28445139 PMCID: PMC5514885 DOI: 10.18632/oncotarget.16937] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 01/27/2023] Open
Abstract
The membrane channel Pannexin 1 (Panx1) mediates apoptotic and inflammatory signaling cascades in injured neurons, responses previously shown to be sexually dimorphic under ischemic conditions. We tested the hypothesis that Panx1 plays an underlying role in mediating sex differences in stroke outcome responses. Middle-aged, 8-9 month old male and female wild type and Panx1 KO mice were subjected to permanent middle cerebral artery (MCA) occlusion, and infarct size and astrocyte and microglia activation were assessed 4 days later. The sexually dimorphic nature of Panx1 deletion was also explored by testing the effect of probenecid a known Panx1 blocker to alter stroke volume. Panx1 KO females displayed significantly smaller infarct volumes (~ 50 % reduction) compared to their wild-type counterparts, whereas no such KO effect occurred in males. This sex-specific effect of Panx1 KO was recapitulated by significant reductions in peri-infarct inflammation and astrocyte reactivity, as well as smaller infarct volumes in probenecid treated females, but not males. Finally, females showed overall, higher Panx1 protein levels than males under ischemic conditions. These findings unmask a deleterious role for Panx1 in response to permanent MCA occlusion, that is unique to females, and provide several new frameworks for understanding sex differences in stroke outcome.
Collapse
|
39
|
Slowik A, Lammerding L, Hoffmann S, Beyer C. Brain inflammasomes in stroke and depressive disorders: Regulation by oestrogen. J Neuroendocrinol 2018; 30. [PMID: 28477436 DOI: 10.1111/jne.12482] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Neuroinflammation is a devastating pathophysiological process that results in brain damage and neuronal death. Pathogens, cell fragments and cellular dysfunction trigger inflammatory responses. Irrespective of the cause, inflammasomes are key intracellular multiprotein signalling platforms that sense neuropathological conditions. The activation of inflammasomes leads to the auto-proteolytic cleavage of caspase-1, resulting in the proteolysis of the pro-inflammatory cytokines interleukin (IL)1β and IL18 into their bioactive forms. It also initiates pyroptosis, a type of cell death. The two cytokines contribute to the pathogenesis in acute and chronic brain diseases and also play a central role in human aging and psychiatric disorders. Sex steroids, in particular oestrogens, are well-described neuroprotective agents in the central nervous system. Oestrogens improve the functional outcome after ischaemia and traumatic brain injury, reduce neuronal death in Parkinson's and Alzheimer's disease, as well as in amyotrophic lateral sclerosis, attenuate glutamate excitotoxicity and the formation of radical oxygen species, and lessen the spread of oedema after damage. Moreover, oestrogens alleviate menopause-related depressive symptoms and have a positive influence on depressive disorders probably by influencing growth factor production and serotonergic brain circuits. Recent evidence also suggests that inflammasome signalling affects anxiety- and depressive-like behaviour and that oestrogen ameliorates depression-like behaviour through the suppression of inflammasomes. In the present review, we highlight the most recent findings demonstrating that oestrogens selectively suppress the activation of the neuroinflammatory cascade in the brain in acute and chronic brain disease models. Furthermore, we aim to describe putative regulatory signalling pathways involved in the control of inflammasomes. Finally, we consider that psychiatric disorders such as depression also contain an inflammatory component that could be modulated by oestrogen.
Collapse
Affiliation(s)
- A Slowik
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - L Lammerding
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - S Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| | - C Beyer
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
40
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
41
|
Maekawa H, Tada Y, Yagi K, Miyamoto T, Kitazato KT, Korai M, Satomi J, Hashimoto T, Nagahiro S. Bazedoxifene, a selective estrogen receptor modulator, reduces cerebral aneurysm rupture in Ovariectomized rats. J Neuroinflammation 2017; 14:197. [PMID: 28969701 PMCID: PMC5625708 DOI: 10.1186/s12974-017-0966-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Background Estrogen deficiency is thought to be responsible for the higher frequency of aneurysmal subarachnoid hemorrhage in post- than premenopausal women. Estrogen replacement therapy appears to reduce this risk but is associated with significant side effects. We tested our hypothesis that bazedoxifene, a clinically used selective estrogen receptor (ER) modulator with fewer estrogenic side effects, reduces cerebral aneurysm rupture in a new model of ovariectomized rats. Methods Ten-week-old female Sprague-Dawley rats were subjected to ovariectomy, hemodynamic changes, and hypertension to induce aneurysms (ovariectomized aneurysm rats) and treated with vehicle or with 0.3 or 1.0 mg/kg/day bazedoxifene. They were compared with sham-ovariectomized rats subjected to hypertension and hemodynamic changes (HT rats). The vasoprotective effects of bazedoxifene and the mechanisms underlying its efficacy were analyzed. Results During 12 weeks of observation, the incidence of aneurysm rupture was 52% in ovariectomized rats. With no effect on the blood pressure, treatment with 0.3 or 1.0 mg/kg/day bazedoxifene lowered this rate to 11 and 17%, almost the same as in HT rats (17%). In ovariectomized rats, the mRNA level of ERα, ERβ, and the tissue inhibitor of metalloproteinase-2 was downregulated in the cerebral artery prone to rupture at 5 weeks after aneurysm induction; the mRNA level of interleukin-1β and the matrix metalloproteinase-9 was upregulated. In HT rats, bazedoxifene restored the mRNA level of ERα and ERβ and decreased the level of interleukin-1β and matrix metalloproteinase-9. These findings suggest that bazedoxifene was protective against aneurysmal rupture by alleviating the vascular inflammation and degradation exacerbated by the decrease in ERα and ERβ. Conclusions Our observation that bazedoxifene decreased the incidence of aneurysmal rupture in ovariectomized rats warrants further studies to validate this response in humans. Electronic supplementary material The online version of this article (10.1186/s12974-017-0966-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidetsugu Maekawa
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Yoshiteru Tada
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Yagi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Takeshi Miyamoto
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keiko T Kitazato
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masaaki Korai
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Junichiro Satomi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomoki Hashimoto
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Ave, SFGH 1, San Francisco, CA, 94110, USA
| | - Shinji Nagahiro
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
42
|
Naderi S, Alimohammadi R, Hakimizadeh E, Roohbakhsh A, Shamsizadeh A, Allahtavakoli M. The effect of exercise preconditioning on stroke outcome in ovariectomized mice with permanent middle cerebral artery occlusion. Can J Physiol Pharmacol 2017; 96:287-294. [PMID: 28873322 DOI: 10.1139/cjpp-2017-0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exercise preconditioning has been shown to be effective in improving behavioral and neuropathological indices after cerebral ischemia. We evaluated the effect of exercise preconditioning, 17β-estradiol, and their combination on stroke outcome using an experimental model of stroke in ovariectomized (OVX) mice. OVX mice were randomly assigned to 4 groups as follows: control (stroke), exercise (exercise and stroke), estradiol (17β-estradiol and stroke), and exercise+estradiol (exercise and 17β-estradiol and stroke). Exercise preconditioning was performed on a treadmill 5 days/week, 40 min/day, at a speed of 18 m/min for 4 weeks. 17β-estradiol was gavaged (40 μg/kg per day) for 4 weeks. Stroke was induced by permanent middle cerebral artery occlusion (pMCAO), and neurological deficits were evaluated 1, 2, and 7 days after stroke. Then, the serum concentrations of matrix metalloproteinase-9 (MMP-9) and interleukin-10 (IL-10) and infarct volumes were assessed. Exercise preconditioning and 17β-estradiol induced a better outcome compared with the control ischemic mice, which was manifested by decrease in MMP-9, increase in IL-10, diminished infarct volume, and improved neurological deficits. Concomitant administration of 17β-estradiol and exercise also significantly improved these parameters. Exercise preconditioning or administration of 17β-estradiol alone or in combination before pMCAO induced significant neuroprotection in OVX mice.
Collapse
Affiliation(s)
- Soudabeh Naderi
- a Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raheleh Alimohammadi
- a Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- d Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- b Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,c Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- d Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- d Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
43
|
Heitzer M, Kaiser S, Kanagaratnam M, Zendedel A, Hartmann P, Beyer C, Johann S. Administration of 17β-Estradiol Improves Motoneuron Survival and Down-regulates Inflammasome Activation in Male SOD1(G93A) ALS Mice. Mol Neurobiol 2016; 54:8429-8443. [PMID: 27957680 DOI: 10.1007/s12035-016-0322-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease manifested by the progressive loss of upper and lower motoneurons. The pathomechanism of ALS is complex and not yet fully understood. Neuroinflammation is believed to significantly contribute to disease progression. Inflammasome activation was recently shown in the spinal cord of human sporadic ALS patients and in the SOD1(G93A) mouse model for ALS. In the present study, we investigated the neuroprotective and anti-inflammatory effects of 17β-estradiol (E2) treatment in pre-symptomatic and symptomatic male SOD1(G93A) mice. Symptomatic mice with E2 substitution exhibited improved motor performance correlating with an increased survival of motoneurons in the lumbar spinal cord. Expression of NLRP3 inflammasome proteins and levels of activated caspase 1 and mature interleukin 1 beta were significantly reduced in SOD1(G93A) mice supplemented with E2.
Collapse
Affiliation(s)
- Marius Heitzer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Kaiser
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mithila Kanagaratnam
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Philipp Hartmann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-BRAIN, 52074, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
44
|
NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17 β-Estradiol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8309031. [PMID: 27843532 PMCID: PMC5097821 DOI: 10.1155/2016/8309031] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective factor in the brain. Recently, our lab demonstrated that the neuroprotective and cognitive effects of E2 require mediation by the estrogen receptor (ER) coregulator protein and proline-, glutamic acid-, and leucine-rich protein 1 (PELP1). In the current study, we examined whether E2, acting via PELP1, can exert anti-inflammatory effects in the ovariectomized rat and mouse hippocampus to regulate NLRP3 inflammasome activation after global cerebral ischemia (GCI). Activation of the NLRP3 inflammasome pathway and expression of its downstream products, cleaved caspase-1 and IL-1β, were robustly increased in the hippocampus after GCI, with peak levels observed at 6-7 days. Expression of P2X7 receptor, an upstream regulator of NLRP3, was also increased after GCI. E2 markedly inhibited NLRP3 inflammasome pathway activation, caspase-1, and proinflammatory cytokine production, as well as P2X7 receptor expression after GCI (at both the mRNA and protein level). Intriguingly, the ability of E2 to exert these anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling. Collectively, our study demonstrates that NLRP3 inflammasome activation and proinflammatory cytokine production are markedly increased in the hippocampus after GCI, and that E2 signaling via PELP1 can profoundly inhibit these proinflammatory effects.
Collapse
|
45
|
Brand FJ, Forouzandeh M, Kaur H, Travascio F, de Rivero Vaccari JP. Acidification changes affect the inflammasome in human nucleus pulposus cells. JOURNAL OF INFLAMMATION-LONDON 2016; 13:29. [PMID: 27563282 PMCID: PMC4997758 DOI: 10.1186/s12950-016-0137-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin (IL)-1β is involved in the pathology of intervertebral disc degeneration. Under normal conditions, IL-1β is present in cells in an inactive form (pro-IL-1β). However, under pathological conditions, pro-IL-1β is turned into its active form (IL-1β) by the inflammasome, a multi-protein complex of the innate immune response that activates caspase-1. Under conditions of degeneration, the disc experiences an environment of increased acidification. However, the implications of acidification on the innate immune response remain poorly explored. METHODS Here we have studied how pH changes in human nucleus pulposus cells affect inflammasome activation by immunoblot analysis of protein lysates obtained from nucleus pulposus cells that were exposed to different pH levels in culture. RESULTS In this study, we have found that in nucleus pulposus cells, with increased acidification, there was a decrease in inflammasome activation consistent with lower levels of active IL-1β. However, this effect at a pH of 6.5, the lowest pH level tested, was abrogated when cells were treated with IL-1β. CONCLUSIONS Taken together, these findings suggest that the inflammatory response through IL-1β experienced by the human disc is not initiated in nucleus pulposus cells when the stimulus is acidification.
Collapse
Affiliation(s)
- Frank J Brand
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Mahtab Forouzandeh
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Harmanpreet Kaur
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Francesco Travascio
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ; Department of Neurological Surgery, Lois Pope LIFE Center, 1095 NW 14th Terrace, 3-25JJ, Miami, FL 33136-1060 USA
| |
Collapse
|
46
|
Shin JA, Yoon JC, Kim M, Park EM. Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury. Free Radic Biol Med 2016; 92:78-89. [PMID: 26784014 DOI: 10.1016/j.freeradbiomed.2016.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 12/15/2022]
Abstract
Ischemic stroke, which induces oxidative stress in the brain, disrupts tight junctions (TJs) between brain endothelial cells, resulting in blood-brain barrier (BBB) breakdown and brain edema. Estrogen reduces oxidative stress and protects brain endothelial cells from ischemic insult. The aim of this study was to determine the protective effects of estrogen on TJ disruption and to examine the roles of classical estrogen receptor (ER) subtypes, ERα- and ERβ, in estrogen effects in brain endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Estrogen pretreatment prevented OGD/R-induced decreases in cell viability and TJ protein levels. ERα- and ERβ-specific agonists also reduced TJ disruption. Knockdown of ERα or ERβ expression partially inhibited the effects of estrogen, but completely reversed the effects of corresponding ER subtype-specific agonists on the outcomes of OGD/R. During the early reperfusion period, activation of extracellular signal-regulated kinase1/2 and hypoxia-inducible factor 1α/vascular endothelial growth factor was associated with decreased expression of occludin and claudin-5, respectively, and these changes in TJ protein levels were differentially regulated by ER subtype-specific agonists. Our results suggest that ERα and ERβ activation reduce TJ disruption via inhibition of signaling molecules after ischemic injury and that targeting each ER subtype can be a useful strategy for protecting the BBB from ischemic stroke in postmenopausal women.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Joo Chun Yoon
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Minsuk Kim
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea.
| |
Collapse
|