1
|
Su Y, Zheng H, Cui X, Zhang S, Zhang S, Hu Z, Hao X, Li M, Guo G, Xia Z, Shi C, Mao C, Xu Y. Single-cell sequencing insights into the transcriptional landscape of Parkinson's disease. Ageing Res Rev 2024; 102:102553. [PMID: 39454761 DOI: 10.1016/j.arr.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, with an unknown etiology and no specific treatment. Emerging single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have become instrumental in unravelling cellular heterogeneity and characterizing molecular signatures at single-cell resolution. Single-cell T cell receptor sequencing (scTCR-seq) and single-cell B cell receptor sequencing (scBCR-seq) technologies provide unprecedented opportunities to explore the immune repertoire diversity. These state-of-the-art technologies have been increasingly applied in PD research in the last five years, offering novel insights into the cellular susceptibilities and complex molecular mechanisms underlying PD pathogenesis. Herein we review recent advances in the applications of sc/snRNA-seq, scTCR-seq and scBCR-seq technologies in various PD models. Moreover, we focus on degenerative neurons, activated neuroglial cells, as well as pro-inflammatory immune cells, exploring their unique transcriptional landscapes in PD, as revealed by single-cell sequencing technologies. Finally, we highlight important challenges and the future directions of single-cell experiments in PD research.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuyu Zhang
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, Henan 450052, China.
| |
Collapse
|
2
|
Hoshino T, Mukai A, Yamashita H, Misawa H, Urushitani M, Tashiro Y, Matsuzawa SI, Takahashi R. NDRG1 upregulation by ubiquitin proteasome system dysfunction aggravates neurodegeneration. Mol Brain 2024; 17:77. [PMID: 39444004 PMCID: PMC11515609 DOI: 10.1186/s13041-024-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Protein turnover is crucial for cell survival, and the impairment of proteostasis leads to cell death. Aging is associated with a decline in proteostasis, as the progressive accumulation of damaged proteins is a hallmark of age-related disorders such as neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We previously discovered that the declining function of the ubiquitin-proteasome system (UPS) in motor neurons contributes to sporadic ALS pathologies, such as progressive motor neuron loss, protein accumulation, and glial activation. However, the mechanisms of UPS dysfunction-induced cell damage, such as cell death and aggregation, are not fully understood. This study used transcriptome analysis of motor neurons with UPS dysfunction and found that the expression of N-myc downstream regulated 1 (NDRG1) gets upregulated by UPS dysfunction. Additionally, the upregulation of NDRG1 induces cell death in the Neuro2a mouse neuroblastoma cell line. These results suggest that NDRG1 is a potential marker for UPS dysfunction and may play a role in neurodegeneration, such as that seen in ALS.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8503, Japan
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Atsushi Mukai
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8503, Japan
- Department of Therapeutics for Multiple System Atrophy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hirofumi Yamashita
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8503, Japan
- Department of Neurology, Japanese Red Cross Wakayama Medical Center, Wakayama, 640-8558, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Yoshitaka Tashiro
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8503, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8503, Japan.
- Department of Therapeutics for Multiple System Atrophy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
- , Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8503, Japan.
- Department of Therapeutics for Multiple System Atrophy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
- , 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T, Liu W. Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cell Mol Neurobiol 2023; 43:2627-2642. [PMID: 36988772 PMCID: PMC11410137 DOI: 10.1007/s10571-023-01343-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Programed cell death plays a key role in promoting human development and maintaining homeostasis. Ferroptosis is a recently identified pattern of programmed cell death that is closely associated with the onset and progression of neurodegenerative diseases. Ferroptosis is mainly caused by the intracellular accumulation of iron-dependent lipid peroxides. The cysteine/glutamate antibody Solute carrier family 7 member 11 (SLC7A11, also known as xCT) functions to import cysteine for glutathione biosynthesis and antioxidant defense. SLC7A11 has a significant impact on ferroptosis, and inhibition of SLC7A11 expression promotes ferroptosis. Moreover, SLC7A11 is also closely associated with neurodegenerative diseases. In this paper, we summarize the relationship between ferroptosis and neurodegenerative diseases and the role of SLC7A11 during this process. The various regulatory mechanisms of SLC7A11 are also discussed. In conclusion, we are looking forward to a theoretical basis for further understanding the occurrence and development of ferroptosis in SLC7A11 and neurodegenerative diseases, and to seek new clues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
4
|
Kamath T, Macosko EZ. Insights into Neurodegeneration in Parkinson's Disease from Single-Cell and Spatial Genomics. Mov Disord 2023; 38:518-525. [PMID: 36881930 PMCID: PMC11056908 DOI: 10.1002/mds.29374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Parkinson's disease (PD) is pathologically defined by the death of dopaminergic (DA) neurons within the pars compacta of the substantia nigra. To date, the cause of this multifaceted disease remains largely unclear, which may contribute in part to a current lack of disease-modifying therapies. Recent advances in single-cell and spatial genomic profiling tools have provided powerful new ways to measure cellular state changes in brain diseases. Here, we describe how these tools have offered insight into these complex disorders and highlight a recently performed comprehensive study of DA neuron susceptibility in PD. The data generated by this recent work provide evidence for the role of specific pathways and common genetic variants resulting in the loss of a critical DA subtype in PD. We conclude by outlining a set of basic and translational opportunities that arise from those data and insights gathered from this work. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tushar Kamath
- Stanley Center for Psychiatric Research, Broad Institute, 75 Ames Street Cambridge, MA 02139
- Harvard Medical School and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139 USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute, 75 Ames Street Cambridge, MA 02139
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA USA
| |
Collapse
|
5
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
6
|
Nuclear α-Synuclein-Derived Cytotoxic Effect via Altered Ribosomal RNA Processing in Primary Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 24:ijms24032132. [PMID: 36768455 PMCID: PMC9917353 DOI: 10.3390/ijms24032132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
α-Synuclein (αSyn) is an important player in Parkinson's disease (PD) pathogenesis. The aggregation of αSyn is mainly formed in the cytoplasm, whereas some αSyn accumulation has also been found in the nuclei of neurons. To assess the effect of nuclear αSyn, we generated αSyn conjugated with a nuclear export signal (NES) or a nuclear localization signal (NLS), and compared them with wild-type αSyn in primary mouse embryonic fibroblasts (MEF) using DNA transfection. Overexpression of NLS-αSyn increased cytotoxicity. The levels of apoptotic markers were increased by NLS-αSyn in MEF. Interestingly, an increase in the levels of 40S ribosomal protein 15 was observed in MEF expressing NLS-αSyn. These MEF also showed a higher 28S/18S rRNA ratio. Intriguingly, the expression of NLS-αSyn in MEF enhanced segmentation of nucleolin (NCL)-positive nucleolar structures. We also observed that the downregulation of NCL, using shRNA, promoted a relatively higher 28S/18S rRNA ratio. The reduction in NCL expression accelerated the accumulation of αSyn, and NCL transfection enhanced the degradation of αSyn. These results suggest that nuclear αSyn contributes to the alteration in ribosomal RNA processing via NCL malfunction-mediated nucleolar segmentation, and that NCL is a key factor for the degradation of αSyn.
Collapse
|
7
|
Lei L, Lu Q, Ma G, Li T, Deng J, Li W. P53 protein and the diseases in central nervous system. Front Genet 2023; 13:1051395. [PMID: 36712862 PMCID: PMC9880595 DOI: 10.3389/fgene.2022.1051395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
P53 protein is the product of P53 gene, which is a well acknowledged tumor suppressor gene. The function of P53 and the relevant mechanisms of anti-neoplasm have raised the interest of researchers since many years ago. It is demonstrated that P53 is a basic cell cycle regulator and a strong inhibitor for versatile cancers in humans. However, most research focuses on other organs and systems instead of the central nervous system (CNS). In fact, in recent years, more and more studies have been suggesting that P53 plays a significant role in multiple CNS tumors and other diseases and disorders such as cerebral stroke and neurodegenerative diseases. In this work, we mainly reviewed the P53's relationship with CNS tumors, cerebral stroke and neurodegenerative diseases, together with the relevant mechanisms, aiming to summarize the research achievements and providing new insight to the future study on diseases in CNS.
Collapse
Affiliation(s)
- Li Lei
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Guifang Ma
- Department of Ear, Nose and Throat (ENT) and Head and Neck (HN) Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiahong Deng
- Department of Ear, Nose and Throat (ENT) and Head and Neck (HN) Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Jiahong Deng, ; Weijia Li,
| | - Weijia Li
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,*Correspondence: Jiahong Deng, ; Weijia Li,
| |
Collapse
|
8
|
Zhao Y, Zhang J, Zhang Y, Li S, Gao Y, Chang C, Liu X, Xu L, Yang G. Proteomic Analysis of Protective Effects of Dl-3-n-Butylphthalide against mpp + -Induced Toxicity via downregulating P53 pathway in N2A Cells. Proteome Sci 2023; 21:1. [PMID: 36597095 PMCID: PMC9809048 DOI: 10.1186/s12953-022-00199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Yuan Zhao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jian Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yidan Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuyue Li
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ya Gao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Cui Chang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiang Liu
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Xu
- grid.452702.60000 0004 1804 3009Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Guofeng Yang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
9
|
Buettner JM, Sowoidnich L, Gerstner F, Blanco-Redondo B, Hallermann S, Simon CM. p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models. Front Cell Neurosci 2022; 16:1038276. [DOI: 10.3389/fncel.2022.1038276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets c-fos, perp and fas in vulnerable motor neurons of SMA mice. Fluorescence in situ hybridization (FISH) of SMA motor neurons revealed c-fos RNA as a promising candidate. Accordingly, we identified p53-dependent nuclear upregulation of c-Fos protein in degenerating motor neurons from the severe SMNΔ7 and intermediate Smn2B/– SMA mouse models. Although motor neuron-specific c-fos genetic deletion in SMA mice did not improve motor neuron survival or motor behavior, p53-dependent c-Fos upregulation marks vulnerable motor neurons in different mouse models. Thus, nuclear c-Fos accumulation may serve as a readout for therapeutic approaches targeting neuronal death in SMA and possibly other p53-dependent neurodegenerative diseases.
Collapse
|
10
|
Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, Balderrama K, Vanderburg C, Macosko EZ. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nat Neurosci 2022; 25:588-595. [PMID: 35513515 PMCID: PMC9076534 DOI: 10.1038/s41593-022-01061-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
The loss of dopamine (DA) neurons within the substantia nigra pars compacta (SNpc) is a defining pathological hallmark of Parkinson's disease (PD). Nevertheless, the molecular features associated with DA neuron vulnerability have not yet been fully identified. Here, we developed a protocol to enrich and transcriptionally profile DA neurons from patients with PD and matched controls, sampling a total of 387,483 nuclei, including 22,048 DA neuron profiles. We identified ten populations and spatially localized each within the SNpc using Slide-seq. A single subtype, marked by the expression of the gene AGTR1 and spatially confined to the ventral tier of SNpc, was highly susceptible to loss in PD and showed the strongest upregulation of targets of TP53 and NR2F2, nominating molecular processes associated with degeneration. This same vulnerable population was specifically enriched for the heritable risk associated with PD, highlighting the importance of cell-intrinsic processes in determining the differential vulnerability of DA neurons to PD-associated degeneration.
Collapse
Affiliation(s)
- Tushar Kamath
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Abdulraouf Abdulraouf
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - S J Burris
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Jonah Langlieb
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Vahid Gazestani
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Naeem M Nadaf
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Karol Balderrama
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Charles Vanderburg
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA.
| |
Collapse
|
11
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
12
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
13
|
Bedolla A, Taranov A, Luo F, Wang J, Turcato F, Fugate EM, Greig NH, Lindquist DM, Crone SA, Goto J, Luo Y. Diphtheria toxin induced but not CSF1R inhibitor mediated microglia ablation model leads to the loss of CSF/ventricular spaces in vivo that is independent of cytokine upregulation. J Neuroinflammation 2022; 19:3. [PMID: 34983562 PMCID: PMC8728932 DOI: 10.1186/s12974-021-02367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Two recently developed novel rodent models have been reported to ablate microglia, either by genetically targeting microglia (via Cx3cr1-creER: iDTR + Dtx) or through pharmacologically targeting the CSF1R receptor with its inhibitor (PLX5622). Both models have been widely used in recent years to define essential functions of microglia and have led to high impact studies that have moved the field forward. Methods Using either Cx3cr1-iDTR mice in combination with Dtx or via the PLX5622 diet to pharmacologically ablate microglia, we compared the two models via MRI and histology to study the general anatomy of the brain and the CSF/ventricular systems. Additionally, we analyzed the cytokine profile in both microglia ablation models. Results We discovered that the genetic ablation (Cx3cr1-iDTR + Dtx), but not the pharmacological microglia ablation (PLX5622), displays a surprisingly rapid pathological condition in the brain represented by loss of CSF/ventricles without brain parenchymal swelling. This phenotype was observed both in MRI and histological analysis. To our surprise, we discovered that the iDTR allele alone leads to the loss of CSF/ventricles phenotype following diphtheria toxin (Dtx) treatment independent of cre expression. To examine the underlying mechanism for the loss of CSF in the Cx3cr1-iDTR ablation and iDTR models, we additionally investigated the cytokine profile in the Cx3cr1-iDTR + Dtx, iDTR + Dtx and the PLX models. We found increases of multiple cytokines in the Cx3cr1-iDTR + Dtx but not in the pharmacological ablation model nor the iDTR + Dtx mouse brains at the time of CSF loss (3 days after the first Dtx injection). This result suggests that the upregulation of cytokines is not the cause of the loss of CSF, which is supported by our data indicating that brain parenchyma swelling, or edema are not observed in the Cx3cr1-iDTR + Dtx microglia ablation model. Additionally, pharmacological inhibition of the KC/CXCR2 pathway (the most upregulated cytokine in the Cx3cr1-iDTR + Dtx model) did not resolve the CSF/ventricular loss phenotype in the genetic microglia ablation model. Instead, both the Cx3cr1-iDTR + Dtx ablation and iDTR + Dtx models showed increased activated IBA1 + cells in the choroid plexus (CP), suggesting that CP-related pathology might be the contributing factor for the observed CSF/ventricular shrinkage phenotype. Conclusions Our data, for the first time, reveal a robust and global CSF/ventricular space shrinkage pathology in the Cx3cr1-iDTR genetic ablation model caused by iDTR allele, but not in the PLX5622 ablation model, and suggest that this pathology is not due to brain edema formation but to CP related pathology. Given the wide utilization of the iDTR allele and the Cx3cr1-iDTR model, it is crucial to fully characterize this pathology to understand the underlying causal mechanisms. Specifically, caution is needed when utilizing this model to interpret subtle neurologic functional changes that are thought to be mediated by microglia but could, instead, be due to CSF/ventricular loss in the genetic ablation model.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Aleksandr Taranov
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Fucheng Luo
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jiapeng Wang
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Flavia Turcato
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth M Fugate
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, USA
| | - Diana M Lindquist
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Steven A Crone
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Yu Luo
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
15
|
Differential Role of p53 in Oligodendrocyte Survival in Response to Various Stresses: Experimental Autoimmune Encephalomyelitis, Cuprizone Intoxication or White Matter Stroke. Int J Mol Sci 2021; 22:ijms222312811. [PMID: 34884611 PMCID: PMC8658009 DOI: 10.3390/ijms222312811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Promoting oligodendrocyte viability has been proposed as a therapeutic strategy for alleviating many neuronal diseases, such as multiple sclerosis and stroke. However, molecular pathways critical for oligodendrocyte survival under various stresses are still not well known. p53 is a strong tumor suppressor and regulates cell cycle, DNA repair and cell death. Our previous studies have shown that p53 plays an important role in promoting neuronal survival after insults, but its specific role in oligodendrocyte survival is not known. Here, we constructed the mice with oligodendrocyte-specific p53 loss by crossing TRP53flox/flox mice and CNP-cre mice, and found that p53 was dispensable for oligodendrocyte differentiation and myelin formation under physiological condition. In the experimental autoimmune encephalomyelitis (EAE) model, p53 loss of function, specifically in oligodendrocytes, did not affect the EAE disease severity and had no effect on demyelination in the spinal cord of the mice. Interestingly, p53 deficiency in oligodendrocytes significantly attenuated the demyelination of corpus callosum and alleviated the functional impairment of motor coordination and spatial memory in the cuprizone demyelination model. Moreover, the oligodendrocyte-specific loss of p53 provided protection against subcortical white matter damage and mitigated recognition memory impairment in mice in the white matter stroke model. These results suggest that p53 plays different roles in the brain and spinal cord or in response to various stresses. Thus, p53 may be a therapeutic target for oligodendrocyte prevention in specific brain injuries, such as white matter stroke and multiple sclerosis.
Collapse
|
16
|
Niu P, Sun Y, Wang S, Li G, Tang X, Sun J, Pan C, Sun J. Puerarin alleviates the ototoxicity of gentamicin by inhibiting the mitochondria‑dependent apoptosis pathway. Mol Med Rep 2021; 24:851. [PMID: 34651662 PMCID: PMC8532108 DOI: 10.3892/mmr.2021.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Gentamicin (GM) is a commonly used antibiotic, and ototoxicity is one of its side effects. Puerarin (PU) is an isoflavone in kudzu roots that exerts a number of pharmacological effects, including antioxidative and free radical scavenging effects. The present study investigated whether PU could protect against GM-induced ototoxicity in C57BL/6J mice and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. C57BL/6J mice and HEI-OC1 cells were used to establish models of GM-induced ototoxicity in this study. Auditory brainstem responses were measured to assess hearing thresholds, and microscopy was used to observe the morphology of cochlear hair cells after fluorescent staining. Cell viability was examined with Cell Counting Kit-8 assays. To evaluate cell apoptosis and reactive oxygen species (ROS) production, TUNEL assays, reverse transcription-quantitative PCR, DCFH-DA staining, JC-1 staining and western blotting were performed. PU protected against GM-induced hearing damage in C57BL/6J mice. PU ameliorated the morphological changes of mouse cochlear hair cells and reduced the apoptosis rate of HEI-OC1 cells after GM-mediated damage. GM-induced ototoxicity may be closely related to the upregulation of p53 expression and the activation of endogenous mitochondrial apoptosis pathways, and PU could protect cochlear hair cells from GM-mediated damage by reducing the production of ROS and inhibiting the mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Ping Niu
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuxuan Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Shiyi Wang
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Guang Li
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaomin Tang
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jiaqiang Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Chunchen Pan
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jingwu Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
17
|
Rezaee Z, Marandi SM, Esfarjani F. Age-related biochemical dysfunction in 6-OHDA model rats subject to induced- endurance exercise. Arch Gerontol Geriatr 2021; 98:104554. [PMID: 34688079 DOI: 10.1016/j.archger.2021.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/30/2023]
Abstract
Exercise can alleviate the disorders considered as the normal consequences of aging. Whether or not the treadmill endurance training affects the biochemical markers in the Parkinson's disease model rats after the 6-hydroxydopamine (6-OHDA) injection is assessed in this article. The experimental groups of N=8 rats consist of 1) Saline and Young sedentary (S-Young); 2) Saline and Old sedentary (S-Old); 3) Young and 6-OHDA without exercise (Y); 4) Young and 6-OHDA with exercise (YE); 5) Old and 6-OHDA without exercise (O); and 6) Old and 6-OHDA with exercise (OE). An 8 μg of 6-OHDA is injected into the right MFB. The rotation due to apomorphine, weight variation, and some biochemical expression are measured in the rats' striatum. Exposure to 6-OHDA: increase weight loss by (%8) and rotation by (%90), reduce the protein levels of Bdnf by (30%), Th by (43%), and Tfam by (24%), in aging rats (P<0.05). The P53 level rose after the injection compared with the same Saline group (Old rats: 27% and Young rats: 14%), the highest in the O group. The findings indicate that endurance exercise amends the mitochondrial parameters and the apomorphine-induced rotation impairments in the presence of 6-OHDA injection. These positive effects of treadmill running in unilateral 6-OHDA lesioned rat model are age-dependent and are more significant in younger rats.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Sayed Mohammad Marandi
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Fahimeh Esfarjani
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
18
|
Li S, Wang M, Wang Y, Guo Y, Tao X, Wang X, Cao Y, Tian S, Li Q. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol In Vitro 2021; 73:105146. [PMID: 33737050 DOI: 10.1016/j.tiv.2021.105146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and striatum. Aging is the most important risk factor of PD. Ferroptosis is an iron-dependent form of cell death associated with PD. However, it is not clear whether ferroptosis accelerates PD by promoting cellular senescence. This study investigated the mechanism of 1-methyl-4-phenylpyridinium (MPP+) -induced PC12 cells injury. We found that MPP+ induced cell senescence with increased β-galactosidase activity and the expression of p53, p21 and p16 activation in cells. In addition, MPP+ treatment showed smaller mitochondria and increased membrane density, downregulation of ferritin heavy chain 1 expression and upregulation of acyl-CoA synthetase long chain family member 4 expression, and enhanced levels of oxidative stress, which were important characteristics of ferroptosis. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was tested to eliminate MPP+-induced cell senescence. Fer-1 downregulated the expression of p53 and upregulated the expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase-4 (GPX4) in MPP+-induced ferroptosis. Inhibition of p53 eliminated cell senescence by upregulation the expression of of SLC7A11 and GPX4. Thus, these results suggest that MPP+ induces senescence in PC12 cells via the p53/ SLC7A11/ GPX4 signaling pathway in the ferroptosis regulation mechanism.
Collapse
Affiliation(s)
- Shanshan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Youlin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuting Guo
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xiaoxiao Tao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yin Cao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shasha Tian
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
19
|
Talebi M, Talebi M, Kakouri E, Farkhondeh T, Pourbagher-Shahri AM, Tarantilis PA, Samarghandian S. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int J Biol Macromol 2021; 172:93-103. [PMID: 33440210 DOI: 10.1016/j.ijbiomac.2021.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are incongruous, commonly age-related disorders characterized by progressive neuronal loss, comprising the most prevalent being Alzheimer's disease, Parkinson's disease, and Huntington's disease. Perilous health states are anticipated following the neurodegeneration. Their etiology remains largely ambiguous, while various mechanisms are ascribed to their pathogenesis. A recommended conception is regarding the role of p53, as a transcription factor regulating numerous cellular pathways comprising apoptosis. Neuronal fates are a feasible occurrence that contributes to all neurodegenerative diseases. In this work, we review the research investigated the potential role of p53 in the pathogenesis of these diseases. We put special emphasis on intricate We not only describe aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases but, most importantly, put special attention to the complicated reciprocal tuning connections prevailing between p53 and molecules considered in pathological hallmarks of these disorders. Natural and synthetic medications regulating p53 expression are regarded as well.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Eleni Kakouri
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Petros A Tarantilis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Takamatsu Y, Ho G, Wada R, Inoue S, Hashimoto M. Adiponectin paradox as a therapeutic target of the cancer evolvability in aging. Neoplasia 2021; 23:112-117. [PMID: 33310207 PMCID: PMC7726259 DOI: 10.1016/j.neo.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Recent study suggests that protofibril-formation of amyloidogenic proteins (APs) might be involved in evolvability, an epigenetic inheritance of multiple stresses, in various biological systems. In cancer, evolvability of multiple APs, such as p53, γ-synuclein and the members of the calcitonin family of peptides, might be involved in various features, including increased cell proliferation, metastasis and medical treatment resistance. In this context, the objective of this paper is to explore the potential therapeutic benefits of reduced APs evolvability against cancer. Notably, the same APs are involved in the pathogenesis of neurodegenerative disease and cancer. Given the unsatisfactory outcomes of recent clinical trial of Aβ immunotherapy in Alzheimer's disease, it is possible that suppressing the aggregation of individual APs might also be not effective in cancer. As such, we highlight the adiponectin (APN) paradox that might be positioned upstream of AP aggregation in both neurodegenerative disease and cancer, as a common therapeutic target in both disease types. Provided that the APN paradox due to APN resistance under the diabetic conditions might promote AP aggregation, suppressing the APN paradox combined with antidiabetic treatments might be effective for the therapy of both neurodegenerative disease and cancer.
Collapse
Affiliation(s)
- Yoshiki Takamatsu
- Laboratory for Parkinson's disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Ryoko Wada
- Laboratory for Parkinson's disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Makoto Hashimoto
- Laboratory for Parkinson's disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Gollapalli K, Kim JK, Monani UR. Emerging concepts underlying selective neuromuscular dysfunction in infantile-onset spinal muscular atrophy. Neural Regen Res 2021; 16:1978-1984. [PMID: 33642371 PMCID: PMC8343306 DOI: 10.4103/1673-5374.308073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infantile-onset spinal muscular atrophy is the quintessential example of a disorder characterized by a predominantly neurodegenerative phenotype that nevertheless stems from perturbations in a housekeeping protein. Resulting from low levels of the Survival of Motor Neuron (SMN) protein, spinal muscular atrophy manifests mainly as a lower motor neuron disease. Why this is so and whether other cell types contribute to the classic spinal muscular atrophy phenotype continue to be the subject of intense investigation and are only now gaining appreciation. Yet, what is emerging is sometimes as puzzling as it is instructive, arguing for a careful re-examination of recent study outcomes, raising questions about established dogma in the field and making the case for a greater focus on milder spinal muscular atrophy models as tools to identify key mechanisms driving selective neuromuscular dysfunction in the disease. This review examines the evidence for novel molecular and cellular mechanisms that have recently been implicated in spinal muscular atrophy, highlights breakthroughs, points out caveats and poses questions that ought to serve as the basis of new investigations to better understand and treat this and other more common neurodegenerative disorders.
Collapse
Affiliation(s)
- Kishore Gollapalli
- Department of Neurology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| | - Jeong-Ki Kim
- Department of Neurology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| | - Umrao R Monani
- Department of Neurology; Department of Pathology & Cell Biology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
23
|
Genome-wide association study identifies zonisamide responsive gene in Parkinson's disease patients. J Hum Genet 2020; 65:693-704. [PMID: 32355309 PMCID: PMC8075945 DOI: 10.1038/s10038-020-0760-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Long-term treatment of Parkinson's disease (PD) by levodopa leads to motor complication "wearing-off". Zonisamide is a nondopaminergic antiparkinsonian drug that can improve "wearing-off" although response to the treatment varies between individuals. To clarify the genetic basis of zonisamide responsiveness, we conducted a genome-wide association study (GWAS) on 200 PD patients from a placebo-controlled clinical trial, including 67 responders whose "off" time decreased ≥1.5 h after 12 weeks of zonisamide treatment and 133 poor responders. We genotyped and evaluated the association between 611,492 single nucleotide polymorphisms (SNPs) and "off" time reduction. We also performed whole-genome imputation, gene- and pathway-based analyses of GWAS data. For promising SNPs, we examined single-tissue expression quantitative trait loci (eQTL) data in the GTEx database. SNP rs16854023 (Mouse double minute 4, MDM4) showed genome-wide significant association with reduced "off" time (PAdjusted = 4.85 × 10-9). Carriers of responsive genotype showed >7-fold decrease in mean "off" time compared to noncarriers (1.42 h vs 0.19 h; P = 2.71 × 10-7). In silico eQTL data indicated that zonisamide sensitivity is associated with higher MDM4 expression. Among the 37 pathways significantly influencing "off" time, calcium and glutamate signaling have also been associated with anti-epileptic effect of zonisamide. MDM4 encodes a negative regulator of p53. The association between improved motor fluctuation and MDM4 upregulation implies that p53 inhibition may prevent dopaminergic neuron loss and consequent motor symptoms. This is the first genome-wide pharmacogenetics study on antiparkinsonian drug. The findings provide a basis for improved management of "wearing-off" in PD by genotype-guided zonisamide treatment.
Collapse
|
24
|
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020; 10:biom10030420. [PMID: 32182711 PMCID: PMC7175209 DOI: 10.3390/biom10030420] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 transcription factor plays a critical role in cellular responses to stress. Its activation in response to DNA damage leads to cell growth arrest, allowing for DNA repair, or directs cellular senescence or apoptosis, thereby maintaining genome integrity. Senescence is a permanent cell-cycle arrest that has a crucial role in aging, and it also represents a robust physiological antitumor response, which counteracts oncogenic insults. In addition, senescent cells can also negatively impact the surrounding tissue microenvironment and the neighboring cells by secreting pro-inflammatory cytokines, ultimately triggering tissue dysfunction and/or unfavorable outcomes. This review focuses on the characteristics of senescence and on the recent advances in the contribution of p53 to cellular senescence. Moreover, we also discuss the p53-mediated regulation of several pathophysiological microenvironments that could be associated with senescence and its development.
Collapse
Affiliation(s)
- Mahmut Mijit
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Melillo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Fernanda Amicarelli
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 53100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
25
|
Substituted Piperazines as Novel Potential Radioprotective Agents. Molecules 2020; 25:molecules25030532. [PMID: 31991816 PMCID: PMC7038073 DOI: 10.3390/molecules25030532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.
Collapse
|
26
|
Anis E, Zafeer MF, Firdaus F, Islam SN, Anees Khan A, Ali A, Hossain MM. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother Res 2020; 34:214-226. [PMID: 31657074 DOI: 10.1002/ptr.6523] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/10/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022]
Abstract
Disruption of the tightly regulated mitochondrial dynamics and energy homeostasis leads to oxidative stress and apoptotic cell death, as observed in neurodegenerative disorders such as Parkinson's disease (PD). Polyphenolic plant derivatives have been shown to alleviate such pathological features and have been used in models of neurodegenerative disorders in previous reports. In the current study, we utilized a 6-hydroxydopamine (6-OHDA) lesioned rat model of PD to explore the protective efficacy of polyphenolic phytochemical ferulic acid (FA) against mitochondrial dysfunction and explored its effect on gene and protein expression of mitochondrial dynamics regulators dynamin-related protein 1 (Drp1)/mitofusin 2 (Mfn2) in lesioned animals. We also evaluated its effect on expression of mitochondrial biogenesis regulator PGC1α and apoptotic regulators BAX, cyt c, p53, and cleaved PARP. We found that oral FA supplementation alleviated 6-OHDA induced oxidative stress, DNA fragmentation, morphological changes, and blocked apoptotic cascade. FA also reduced mitochondrial Drp1 expression and increased gene and protein expression of PGC1α, thereby regulating expression of its downstream target Mfn2 and restoring mitochondrial dynamics in lesioned animals. Our data suggest that targeting mitochondrial dynamics through modulation of PGC1α can prove to be a potent preventive strategy against PD pathology.
Collapse
Affiliation(s)
- Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Azka Anees Khan
- Department of Pathology, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
27
|
Sekar S, Taghibiglou C. Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson’s disease. Neurosci Lett 2020; 716:134641. [DOI: 10.1016/j.neulet.2019.134641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/25/2022]
|
28
|
Peroxiredoxin 5 Silencing Sensitizes Dopaminergic Neuronal Cells to Rotenone via DNA Damage-Triggered ATM/p53/PUMA Signaling-Mediated Apoptosis. Cells 2019; 9:cells9010022. [PMID: 31861721 PMCID: PMC7016837 DOI: 10.3390/cells9010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (Prxs) are a family of thioredoxin peroxidases. Accumulating evidence suggests that changes in the expression of Prxs may be involved in neurodegenerative diseases pathology. However, the expression and function of Prxs in Parkinson’s disease (PD) remains unclear. Here, we showed that Prx5 was the most downregulated of the six Prx subtypes in dopaminergic (DA) neurons in rotenone-induced cellular and rat models of PD, suggesting possible roles in regulating their survival. Depletion of Prx5 sensitized SH-SY5Y DA neuronal cells to rotenone-induced apoptosis. The extent of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation was increased by Prx5 loss. Furthermore, Prx5 knockdown enhanced the induction of PUMA by rotenone through a p53-dependent mechanism. Using RNA interference approaches, we demonstrated that the p53/PUMA signaling was essential for Prx5 silencing-exacerbated mitochondria-driven apoptosis. Additionally, downregulation of Prx5 augmented rotenone-induced DNA damage manifested as induction of phosphorylated histone H2AX (γ-H2AX) and activation of ataxia telangiectasia mutated (ATM) kinase. The pharmacological inactivation of ATM revealed that ATM was integral to p53 activation by DNA damage. These findings provided a novel link between Prx5 and DNA damage-triggered ATM/p53/PUMA signaling in a rotenone-induced PD model. Thus, Prx5 might play an important role in protection against rotenone-induced DA neurodegeneration.
Collapse
|
29
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
30
|
Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep 2019; 21:3767-3780. [PMID: 29281826 DOI: 10.1016/j.celrep.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.
Collapse
|
31
|
Effects of Preventive Treadmill Exercise on the Recovery of Metabolic and Mitochondrial Factors in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Neurotox Res 2019; 35:908-917. [DOI: 10.1007/s12640-019-0004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
|
32
|
Van Alstyne M, Simon CM, Sardi SP, Shihabuddin LS, Mentis GZ, Pellizzoni L. Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev 2018; 32:1045-1059. [PMID: 30012555 PMCID: PMC6075148 DOI: 10.1101/gad.316059.118] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
Abstract
Van Alstyne et al. show that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration. Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons—a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)—through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - S Pablo Sardi
- Neuroscience Therapeutic Area, Sanofi, Framingham, Massachusetts 01701, USA
| | | | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.,Department of Neurology, Columbia University, New York, New York 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
33
|
Pariyar R, Lamichhane R, Jung HJ, Kim SY, Seo J. Sulfuretin Attenuates MPP⁺-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways. Int J Mol Sci 2017; 18:ijms18122753. [PMID: 29257079 PMCID: PMC5751352 DOI: 10.3390/ijms18122753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP⁺)-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP⁺-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated MPP⁺-induced production of intracellular reactive oxygen species (ROS) and disruption of mitochondrial membrane potential (MMP). Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP⁺. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP⁺. Taken together, these results suggest that sulfuretin significantly attenuates MPP⁺-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.
Collapse
Affiliation(s)
- Ramesh Pariyar
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| | - Ramakanta Lamichhane
- Deptartment of Oriental Pharmacy, & Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hyun Ju Jung
- Deptartment of Oriental Pharmacy, & Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Sung Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Jungwon Seo
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|
34
|
Lu T, Kim P, Luo Y. Tp53 gene mediates distinct dopaminergic neuronal damage in different dopaminergic neurotoxicant models. Neural Regen Res 2017; 12:1413-1417. [PMID: 29089978 PMCID: PMC5649453 DOI: 10.4103/1673-5374.215243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by pharmacological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal terminal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuronal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.
Collapse
Affiliation(s)
- Tao Lu
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Paul Kim
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
35
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
36
|
Lu T, Kim PP, Greig NH, Luo Y. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity. Neurotox Res 2017; 32:218-230. [PMID: 28342134 DOI: 10.1007/s12640-017-9723-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.
Collapse
Affiliation(s)
- Tao Lu
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Paul P Kim
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute of Aging, Baltimore, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA.
| |
Collapse
|
37
|
MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells. Cell Death Discov 2017; 3:17013. [PMID: 28250973 PMCID: PMC5327502 DOI: 10.1038/cddiscovery.2017.13] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease.
Collapse
|