1
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Histamine H 1 Receptor-Mediated JNK Phosphorylation Is Regulated by G q Protein-Dependent but Arrestin-Independent Pathways. Int J Mol Sci 2024; 25:3395. [PMID: 38542369 PMCID: PMC10970263 DOI: 10.3390/ijms25063395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
2
|
Fan M, Zheng X, Zhu S. Research progress on desensitization of hypersensitivity reaction to iodinated contrast media. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:526-530. [PMID: 37643986 PMCID: PMC10641507 DOI: 10.3724/zdxbyxb-2023-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Desensitization therapy for iodinated contrast media (ICM) aims to induce drug tolerance in patients with a history of severe allergic reactions to ICM in a short time. Currently, there is no widely accepted consensus on inducing desensitization to avoid severe allergic responses to ICM. The clinically successful cases have shown that prophylactic use of antihistamines and glucocorticoids can increase the desensitization effect; repeatedly desensitizing and gradually increasing the dose can be conducive to establishing better tolerance to ICM. Most desensitization effects, including stress resistance, can endure 24-48 h. The mechanisms of desensitization therapy remain unclear, the initial dose, administration interval and dose gradient are largely based on clinical experiences and the reaction of patients. This article reviews the current research progress on ICM-related allergies, desensitization methods and related mechanisms, as well as the benefits and hazards of desensitization, to provide a reference for desensitization treatment of hypersensitivity to ICM .
Collapse
Affiliation(s)
- Miao Fan
- Department of Pharmacy, the First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang Province, China.
| | - Xiaomeng Zheng
- Department of Pharmacy, the First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang Province, China
| | - Suyan Zhu
- Department of Pharmacy, the First Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang Province, China.
| |
Collapse
|
3
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Differential regulation of histamine H 1 receptor-mediated ERK phosphorylation by G q proteins and arrestins. Biochem Pharmacol 2023; 213:115595. [PMID: 37201878 DOI: 10.1016/j.bcp.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ayaka Nagata
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryosuke Ogami
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
4
|
BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H 1 Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins. Int J Mol Sci 2022; 23:ijms23063184. [PMID: 35328605 PMCID: PMC8953162 DOI: 10.3390/ijms23063184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The histamine H1 receptor (H1R) is a G protein-coupled receptor (GPCR) and plays a key role in allergic reactions upon activation by histamine which is locally released from mast cells and basophils. Consequently, H1R is a well-established therapeutic target for antihistamines that relieve allergy symptoms. H1R signals via heterotrimeric Gq proteins and is phosphorylated by GPCR kinase (GRK) subtypes 2, 5, and 6, consequently facilitating the subsequent recruitment of β-arrestin1 and/or 2. Stimulation of a GPCR with structurally different agonists can result in preferential engagement of one or more of these intracellular signaling molecules. To evaluate this so-called biased agonism for H1R, bioluminescence resonance energy transfer (BRET)-based biosensors were applied to measure H1R signaling through heterotrimeric Gq proteins, second messengers (inositol 1,4,5-triphosphate and Ca2+), and receptor-protein interactions (GRKs and β-arrestins) in response to histamine, 2-phenylhistamines, and histaprodifens in a similar cellular background. Although differences in efficacy were observed for these agonists between some functional readouts as compared to reference agonist histamine, subsequent data analysis using an operational model of agonism revealed only signaling bias of the agonist Br-phHA-HA in recruiting β-arrestin2 to H1R over Gq biosensor activation.
Collapse
|
5
|
Temporal Modulation of Drug Desensitization Procedures. Curr Issues Mol Biol 2022; 44:833-844. [PMID: 35723342 PMCID: PMC8929139 DOI: 10.3390/cimb44020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
Drug hypersensitivity reactions are an unavoidable clinical consequence of the presence of new therapeutic agents. These adverse reactions concern patients afflicted with infectious diseases (e.g., hypersensitivity to antibiotics), and with non-infectious chronic diseases, such as in cancers, diabetes or cystic fibrosis treatments, and may occur at the first drug administration or after repeated exposures. Here we revise recent key studies on the mechanisms underlying the desensitization protocols, and propose an additional temporal regulation layer that is based on the circadian control of the signaling pathway involved and on the modulation of the memory effects established by the desensitization procedures.
Collapse
|
6
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Kobayashi C, Tanaka A, Yasuda T, Hishinuma S. Roles of Lys191 and Lys179 in regulating thermodynamic binding forces of ligands to determine their binding affinity for human histamine H 1 receptors. Biochem Pharmacol 2020; 180:114185. [PMID: 32738199 DOI: 10.1016/j.bcp.2020.114185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Docking simulations based on the crystal structure of human histamine H1 receptors have predicted crucial roles of Lys1915.39 and Lys179ECL2, which exist at the entrance of the ligand-binding pocket, in increasing the H1-receptor selectivity for carboxylated second-generation antihistamines via electrostatic interaction. In this study, we evaluated the roles of Lys1915.39 and Lys179ECL2 in regulating the thermodynamic binding forces of non-carboxylated and carboxylated antihistamines that determine their binding affinity for human H1 receptors. The binding enthalpy and entropy of the 3 sets of non-carboxylated and corresponding carboxylated antihistamines (doxepin and olopatadine, desloratadine and loratadine, and terfenadine and fexofenadine, respectively) were estimated using the van't Hoff equation with the dissociation constants obtained from the displacement curves of the non-carboxylated and carboxylated antihistamines against the binding of [3H]mepyramine to the membrane preparations of Chinese hamster ovary cells expressing human H1 receptors at various temperatures, ranging from 4 °C to 37 °C. We found that the affinity for carboxylated antihistamines was lower than that for the corresponding non-carboxylated compounds due to lower enthalpy-dependent electrostatic binding forces and/or entropy-dependent hydrophobic binding forces. Mutations of Lys1915.39 and/or Lys179ECL2 to alanine mostly increased the binding affinity for antihistamines due to a variety of changes in both enthalpy- and entropy-dependent binding forces. These results suggest that Lys1915.39 and Lys179ECL2 may not contribute to selectively increasing the binding affinity for carboxylated antihistamines via electrostatic interaction, but that they can negatively modulate the binding affinity for non-carboxylated and carboxylated antihistamines non-selectively by affecting their electrostatic as well as hydrophobic binding forces.
Collapse
Affiliation(s)
- Chihiro Kobayashi
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan
| | - Airi Tanaka
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan
| | - Tomomi Yasuda
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
8
|
Hishinuma S, Tamura Y, Kobayashi C, Akatsu C, Shoji M. Differential Regulation of Thermodynamic Binding Forces of Levocetirizine and ( S)-Cetirizine by Lys191 in Human Histamine H₁ Receptors. Int J Mol Sci 2018; 19:ijms19124067. [PMID: 30558340 PMCID: PMC6321019 DOI: 10.3390/ijms19124067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023] Open
Abstract
Cetirizine is a zwitterionic second-generation antihistamine containing R- and S-enantiomers, levocetirizine, and (S)-cetirizine. Levocetirizine is known to have a higher affinity for the histamine H₁ receptors than (S)-cetirizine; ligand-receptor docking simulations have suggested the importance of the formation of a salt bridge (electrostatic interaction) between the carboxylic group of levocetirizine and the Lys191 residue at the fifth transmembrane domain of human histamine H₁ receptors. In this study, we evaluated the roles of Lys191 in the regulation of the thermodynamic binding forces of levocetirizine in comparison with (S)-cetirizine. The binding enthalpy and entropy of these compounds were estimated from the van 't Hoff equation, by using the dissociation constants obtained from their displacement curves against the binding of [³H]mepyramine to the membrane preparations of Chinese hamster ovary cells expressing wild-type human H₁ receptors and their Lys191 mutants to alanine at various temperatures. We found that the higher binding affinity of wild-type H₁ receptors for levocetirizine than (S)-cetirizine was achieved by stronger forces of entropy-dependent hydrophobic binding of levocetirizine. The mutation of Lys191 to alanine reduced the affinities for levocetirizine and (S)-cetirizine, through a reduction in the entropy-dependent hydrophobic binding forces of levocetirizine and the enthalpy-dependent electrostatic binding forces of (S)-cetirizine. These results suggested that Lys191 differentially regulates the binding enthalpy and entropy of these enantiomers, and that Lys191 negatively regulates the enthalpy-dependent electrostatic binding forces of levocetirizine, contrary to the predictions derived from the ligand-receptor docking simulations.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Yuri Tamura
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Chihiro Kobayashi
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Chizuru Akatsu
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
9
|
Hishinuma S, Komazaki H, Tsukamoto H, Hatahara H, Fukui H, Shoji M. Ca 2+ -dependent down-regulation of human histamine H 1 receptors in Chinese hamster ovary cells. J Neurochem 2017; 144:68-80. [PMID: 29063596 DOI: 10.1111/jnc.14245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Gq/11 protein-coupled human histamine H1 receptors in Chinese hamster ovary cells stimulated with histamine undergo clathrin-dependent endocytosis followed by proteasome/lysosome-mediated down-regulation. In this study, we evaluated the effects of a sustained increase in intracellular Ca2+ concentrations induced by a receptor-bypassed stimulation with ionomycin, a Ca2+ ionophore, on the endocytosis and down-regulation of H1 receptors in Chinese hamster ovary cells. All cellular and cell-surface H1 receptors were detected by the binding of [3 H]mepyramine to intact cells sensitive to the hydrophobic and hydrophilic H1 receptor ligands, mepyramine and pirdonium, respectively. The pretreatment of cells with ionomycin markedly reduced the mepyramine- and pirdonium-sensitive binding sites of [3 H]mepyramine, which were completely abrogated by the deprivation of extracellular Ca2+ and partially by a ubiquitin-activating enzyme inhibitor (UBEI-41), but were not affected by inhibitors of calmodulin (W-7 or calmidazolium) and protein kinase C (chelerythrine or GF109203X). These ionomycin-induced changes were also not affected by inhibitors of receptor endocytosis via clathrin (hypertonic sucrose) and caveolae/lipid rafts (filipin or nystatin) or by inhibitors of lysosomes (E-64, leupeptin, chloroquine, or NH4 Cl), proteasomes (lactacystin or MG-132), and a Ca2+ -dependent non-lysosomal cysteine protease (calpain) (MDL28170). Since H1 receptors were normally detected by confocal immunofluorescence microscopy with an antibody against H1 receptors, even after the ionomycin treatment, H1 receptors appeared to exist in a form to which [3 H]mepyramine was unable to bind. These results suggest that H1 receptors are apparently down-regulated by a sustained increase in intracellular Ca2+ concentrations with no process of endocytosis and lysosomal/proteasomal degradation of receptors.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroshi Komazaki
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hayato Tsukamoto
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hirokazu Hatahara
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
10
|
Gao W, Shi P, Chen X, Zhang L, Liu J, Fan X, Luo X. Clathrin-mediated integrin αIIbβ3 trafficking controls platelet spreading. Platelets 2017; 29:610-621. [PMID: 28961039 DOI: 10.1080/09537104.2017.1353682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dynamic endocytic and exocytic trafficking of integrins is an important mechanism for cell migration, invasion, and cytokinesis. Endocytosis of integrin can be classified as clathrin dependent and clathrin independent manners. And rapid delivery of endocytic integrins back to the plasma membrane is key intracellular signals and is indispensable for cell movement. Integrin αIIbβ3 plays a critical role in thrombosis and hemostasis. Although previous studies have demonstrated that internalization of fibrinogen-bound αIIbβ3 may regulate platelet activation, the roles of endocytic and exocytic trafficking of integrin αIIbβ3 in platelet activation are unclear. In this study, we found that a selective inhibitor of clathrin-mediated endocytosis pitstop 2 inhibited human platelet spreading on immobilized fibrinogen (Fg). Mechanism studies revealed that pitstop 2 did not block the endocytosis of αIIbβ3 and Fg uptake, but inhibit the recycling of αIIbβ3 to plasma membrane during platelet or CHO cells bearing αIIbβ3 spreading on immobilized Fg. And pitstop 2 enhanced the association of αIIbβ3 with clathrin, and AP2 indicated that pitstop 2 inhibit platelet activation is probably due to disturbance of the dynamic dissociation of αIIbβ3 from clathrin and AP2. Further study demonstrated that Src/PLC/PKC was the key pathway to trigger the endocytosis of αIIbβ3 during platelet activation. Pitstop 2 also inhibited platelet aggregation and secretion. Our findings suggest integrin αIIbβ3 trafficking is clathrin dependent and plays a critical role in platelet spreading, and pitstop 2 may serve as an effective tool to address clathrin-mediated trafficking in platelets.
Collapse
Affiliation(s)
- Wen Gao
- a Department of Cardiology , Huashan Hospital, Fudan University , Shanghai , China
| | - Panlai Shi
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xue Chen
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Lin Zhang
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Junling Liu
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xuemei Fan
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xinping Luo
- a Department of Cardiology , Huashan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
11
|
de Las Vecillas Sánchez L, Alenazy LA, Garcia-Neuer M, Castells MC. Drug Hypersensitivity and Desensitizations: Mechanisms and New Approaches. Int J Mol Sci 2017; 18:E1316. [PMID: 28632196 PMCID: PMC5486137 DOI: 10.3390/ijms18061316] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
Drug hypersensitivity reactions (HSRs) are increasing in the 21st Century with the ever expanding availability of new therapeutic agents. Patients with cancer, chronic inflammatory diseases, cystic fibrosis, or diabetes can become allergic to their first line therapy after repeated exposures or through cross reactivity with environmental allergens. Avoidance of the offending allergenic drug may impact disease management, quality of life, and life expectancy. Precision medicine provides new tools for the understanding and management of hypersensitivity reactions (HSRs), as well as a personalized treatment approach for IgE (Immunoglobuline E) and non-IgE mediated HSRs with drug desensitization (DS). DS induces a temporary hyporesponsive state by incremental escalation of sub-optimal doses of the offending drug. In vitro models have shown evidence that IgE desensitization is an antigen-specific process which blocks calcium flux, impacts antigen/IgE/FcεRI complex internalization and prevents the acute and late phase reactions as well as mast cell mediator release. Through a "bench to bedside" approach, in vitro desensitization models help elucidate the molecular pathways involved in DS, providing new insights to improved desensitization protocols for all patients. The aim of this review is to summarize up to date information on the drug HSRs, the IgE mediated mechanisms of desensitization, and their clinical applications.
Collapse
Affiliation(s)
- Leticia de Las Vecillas Sánchez
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Allergy, Marqués de Valdecilla University Hospital-IDIVAL, 39011 Santander, Spain.
| | - Leila A Alenazy
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Medicine, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia.
- Master of Medical Sciences in Immunology Program, Harvard Medical School, Boston, MA 02115, USA.
| | - Marlene Garcia-Neuer
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Mariana C Castells
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Hishinuma S, Kosaka K, Akatsu C, Uesawa Y, Fukui H, Shoji M. Asp73-dependent and -independent regulation of the affinity of ligands for human histamine H 1 receptors by Na . Biochem Pharmacol 2016; 128:46-54. [PMID: 28040476 DOI: 10.1016/j.bcp.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 11/16/2022]
Abstract
The affinity of ligands for G-protein-coupled receptors (GPCRs) is allosterically regulated by Na+ via a highly conserved aspartate residue (Asp2.50) in the second transmembrane domain of GPCRs. In the present study, we examined the Na+-mediated regulation of the affinity of ligands for Gq/11-protein-coupled human histamine H1 receptors in Chinese hamster ovary cells. The affinities of 3 agonists and 20 antihistamines were evaluated by their displacement curves against the binding of [3H]-mepyramine to membrane preparations in the presence or absence of 100mM NaCl. The affinities of most drugs including histamine, an agonist, and d-chlorpheniramine, a first-generation antihistamine, were reduced by NaCl, with the extent of NaCl-mediated changes varying widely between drugs. In contrast, the affinities of some second-generation antihistamines such as fexofenadine were increased by NaCl. These changes were retained in intact cells. The mutation of Asp2.50 (Asp73) to asparagine abrogated NaCl-induced reductions in affinities for histamine and d-chlorpheniramine, but not NaCl-induced increases in the affinity for fexofenadine. Quantitative structure-activity relationship (QSAR) analyses showed that these Na+-mediated changes were explained and predicted by a combination of the molecular energies and implicit solvation energies of the compounds. These results suggest that Na+ diversely regulates the affinity of ligands for H1 receptors from the extracellular sites of receptors via Asp73-dependent and -independent mechanisms in a manner that depends on the physicochemical properties of ligands. These results may contribute to a deeper understanding of the fundamental mechanisms by which the affinity of ligands for their receptors is allosterically regulated by Na+.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Kiyoe Kosaka
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Chizuru Akatsu
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshihiro Uesawa
- Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|