1
|
Cardona-Jordan KM, Lay-Rivera XX, Cartagena-López E, Bracho-Rincón DL, González-Bermejo R, Alvarado-Monefeldt GL, Del Toro JPG, Esquilín-Rodríguez CJ, Lloret-Torres M, Velázquez-Marrero C. Sex Differences in Contextual Extinction Learning After Single Binge-Like EtOH Exposure in Adolescent C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620195. [PMID: 39484582 PMCID: PMC11527338 DOI: 10.1101/2024.10.25.620195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The relationship between chronic heavy drinking and post-traumatic stress disorder (PTSD) is well-documented; however, the impact of more common drinking patterns, such as a single episode leading to a blood alcohol concentration (BAC) of 0.09 g/dL (moderate intoxication), remains underexplored. Given the frequent co-occurrence of PTSD and alcohol misuse, it is essential to understand the biological and behavioral factors driving this comorbidity. We hypothesize that alcohol's immediate sedative effects are coupled with the development of persistent molecular alcohol tolerance, which may disrupt fear extinction learning. To investigate this, we employed a S ingle E pisode E thanol (SEE) in-vivo exposure to mimic binge-like alcohol consumption over a 6-hour period, following contextual conditioning trials. Extinction trials were conducted 24 hours later to assess the effects on extinction learning. Our findings reveal a significant deficit in fear extinction learning in alcohol-treated adolescent male mice compared to saline-treated controls, with no such effects observed in female adolescent mice. These results suggest that even non-chronic alcohol exposure may contribute to the development of trauma- and stress-related disorders, such as PTSD, in males. Additionally, histological analysis revealed significant alterations in FKBP5, β-catenin, and GSK-3β levels in the hippocampus, striatum, and basolateral amygdala of alcohol-treated mice following extinction. The insights gained from this study could reshape our understanding of the risk factors for PTSD and open new avenues for prevention and treatment, targeting the molecular mechanisms that mediate alcohol tolerance.
Collapse
Affiliation(s)
- Kiara M Cardona-Jordan
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | - Xiany X Lay-Rivera
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | - Eliezer Cartagena-López
- Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901
| | - Dina L Bracho-Rincón
- Neuroimaging and Electrophysiology Facility - Institute of Neurobiology, 201 Blvd del Valle, San Juan, PR, 00901
| | - Ruth González-Bermejo
- Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901
| | | | | | | | - Mario Lloret-Torres
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | | |
Collapse
|
2
|
Pla-Tenorio J, Velazquez-Perez B, Mendez-Borrero Y, Cruz-Rentas M, Sepulveda-Orengo M, Noel RJ. Astrocytic HIV-1 Nef expression decreases glutamate transporter expression in the nucleus accumbens and increases cocaine-seeking behavior in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617598. [PMID: 39416088 PMCID: PMC11483060 DOI: 10.1101/2024.10.10.617598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease, contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with cART, HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin. This study investigates the relationship that exists between Nef, glutamate homeostasis, and cocaine in the NAc, a critical brain region associated with drug motivation and reward. Using a rat model, we compared the effects of astrocytic Nef and cocaine by molecular analysis of glutamate transporters in the NAc. We further conducted behavioral assessments for cocaine self-administration to evaluate cocaine-seeking behavior. Our findings indicate that both cocaine and Nef independently decrease the expression of the glutamate transporter GLT-1 in the NAc. Additionally, rats with astrocytic Nef expression exhibited increased cocaine-seeking behavior but demonstrated sex dependent molecular differences after behavioral paradigm. In conclusion, our results suggest the expression of Nef intensifies cocaine-induced alterations in glutamate homeostasis in the NAc, potentially underlying increased cocaine-seeking. Understanding these interactions better may inform therapeutic strategies for managing cocaine use disorder in HIV-infected individuals.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Bethzaly Velazquez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Biomedical Sciences, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Yainira Mendez-Borrero
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Myrella Cruz-Rentas
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
3
|
Toren Y, Ziv Y, Sragovich S, McKinney RA, Barak S, Shazman S, Gozes I. Sex-Specific ADNP/NAP (Davunetide) Regulation of Cocaine-Induced Plasticity. J Mol Neurosci 2024; 74:76. [PMID: 39251453 PMCID: PMC11384652 DOI: 10.1007/s12031-024-02234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 09/11/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.
Collapse
Affiliation(s)
- Yael Toren
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yarden Ziv
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Segev Barak
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
4
|
Gawliński D, Gawlińska K, Frankowska M, Filip M. Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration. Int J Mol Sci 2022; 23:ijms232214011. [PMID: 36430488 PMCID: PMC9693497 DOI: 10.3390/ijms232214011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Recent years have provided more and more evidence confirming the important role of Wnt/β-catenin signaling in the pathophysiology of mental illnesses, including cocaine use disorder. High relapse rates, which is a hallmark of drug addiction, prompt the study of changes in Wnt signaling elements (Wnt5a, Wnt7b, and Ctnnb1) in the motivational aspects of cocaine use and early drug-free period (3 days after the last exposure to cocaine). For this purpose, an animal model of intravenous cocaine self-administration and two types of drug-free period (extinction training and abstinence in the home cage) were used. The studies showed that chronic cocaine self-administration mainly disturbs the expression of Wnt5a and Ctnnb1 (the gene encoding β-catenin) in the examined brain structures (striatum and hippocampus), and the examined types of early abstinence are characterized by a different pattern of changes in the expression of these genes. At the same time, in cocaine self-administrated animals, there were no changes in the level of Wnt5a and β-catenin proteins at the tested time points. Moreover, exposure to cocaine induces a significant reduction in the striatal and hippocampal expression of miR-374 and miR-544, which can regulate Wnt5a levels post-transcriptionally. In summary, previous observations from experimenter-administered cocaine have not been fully validated in the cocaine self-administration model. Yoked cocaine administration appears to disrupt Wnt signaling more than cocaine self-administration. The condition of the cocaine-free period, the routes of drug administration, and the motivational aspect of drug administration play an important role in the type of drug-induced molecular changes observed. Furthermore, in-depth research involving additional brain regions is needed to determine the exact role of Wnt signaling in short-term and long-lasting plasticity as well as in the motivational aspects of cocaine use, and thus to assess its potential as a target for new drug therapy for cocaine use disorder.
Collapse
|
5
|
Anxiety and cognitive-related effects of Δ 9-tetrahydrocannabinol (THC) are differentially mediated through distinct GSK-3 vs. Akt-mTOR pathways in the nucleus accumbens of male rats. Psychopharmacology (Berl) 2022; 239:509-524. [PMID: 34860284 DOI: 10.1007/s00213-021-06029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Δ9-tetrahydrocannabinol (THC) is the primary psychoactive compound in cannabis and is responsible for cannabis-related neuropsychiatric side effects, including abnormal affective processing, cognitive and sensory filtering deficits and memory impairments. A critical neural region linked to the psychotropic effects of THC is the nucleus accumbens shell (NASh), an integrative mesocorticolimbic structure that sends and receives inputs from multiple brain areas known to be dysregulated in various disorders, including schizophrenia and anxiety-related disorders. Considerable evidence demonstrates functional differences between posterior vs. anterior NASh sub-regions in the processing of affective and cognitive behaviours influenced by THC. Nevertheless, the neuroanatomical regions and local molecular pathways responsible for these psychotropic effects are not currently understood. OBJECTIVES The objectives of this study were to characterize the effects of intra-accumbens THC in the anterior vs. posterior regions of the NASh during emotional memory formation, sensorimotor gating and anxiety-related behaviours. METHODS We performed an integrative series of translational behavioural pharmacological studies examining anxiety, sensorimotor gating and fear-related associative memory formation combined with regionally specific molecular signalling analyses in male Sprague Dawley rats. RESULTS We report that THC in the posterior NASh causes distortions in emotional salience attribution, impaired sensory filtering and memory retention and heightened anxiety, through a glycogen-synthase-kinase-3 (GSK-3)-β-catenin dependent signalling pathway. In contrast, THC in the anterior NASh produces anxiolytic effects via modulation of protein kinase B (Akt) phosphorylation states. CONCLUSIONS These findings reveal critical new insights into the neuroanatomical and molecular mechanisms associated with the differential neuropsychiatric side effects of THC in dissociable nucleus accumbens sub-regions.
Collapse
|
6
|
Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mol Psychiatry 2022; 27:296-306. [PMID: 34131268 PMCID: PMC8671568 DOI: 10.1038/s41380-021-01186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Neuropsychiatric diseases are manifested by maladaptive behavioral plasticity. Despite the greater understanding of the neuroplasticity underlying behavioral adaptations, pinpointing precise cellular mediators has remained elusive. This has stymied the development of pharmacological interventions to combat these disorders both at the level of progression and relapse. With increased knowledge on the putative role of the transforming growth factor (TGF- β) family of proteins in mediating diverse neuroadaptations, the influence of TGF-β signaling in regulating maladaptive cellular and behavioral plasticity underlying neuropsychiatric disorders is being increasingly elucidated. The current review is focused on what is currently known about the TGF-β signaling in the central nervous system in mediating cellular and behavioral plasticity related to neuropsychiatric manifestations.
Collapse
|
7
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Chen H, Liu Y, Liu P, Dai Q, Wang P. LINC01094 promotes the invasion of ovarian cancer cells and regulates the Wnt/β-catenin signaling pathway by targeting miR-532-3p. Exp Ther Med 2021; 22:1228. [PMID: 34539824 PMCID: PMC8438678 DOI: 10.3892/etm.2021.10662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) participate in the development of ovarian cancer (OC). The present study aimed to explore the roles of long intergenic non-protein coding RNA 1094 (LINC01094) in OC. LINC01094 and microRNA (miR)-532-3p expression in OC tissues and cells were measured using reverse transcription-quantitative PCR. Cell migration and invasion were detected using wound healing assays and Transwell assays, respectively. The binding of LINC01094 or β-catenin to miR-126-5p was detected using a Dual-luciferase reporter assay, and protein expression was confirmed using western blot analysis. The expression level of LINC01094 in patients with OC was higher in OC tissues compared with in adjacent tissues, and LINC01094 was upregulated in OC cell lines. In addition, LINC01094 overexpression promoted the viability, migration, invasion and cell cycle progression of OC cells, and inhibited OC cell apoptosis. Moreover, LINC01094 negatively regulated miR-532-3p in OC cells and tissues. miR-532-3p overexpression decreased the viability, migration, invasion and cell cycle progression of OC cells alongside downregulation of Wnt/β-catenin signaling pathway protein expression, as well as increasing OC cell apoptosis. Inhibition of LINC01094 with small interfering (si)-LINC01094 and overexpression of LINC01094 respectively reversed the effect of miR-532-3p inhibitor and mimics on OC cells. miR-532-3p could directly target β-catenin, and miR-532-3p inhibitor increased β-catenin expression, while si-LINC01094 attenuated this effect. In addition, LINC01094 overexpression promoted tumor growth in vivo by regulating miR-532-3p. Taken together, LINC01094 promoted the growth, migration, invasion and Wnt/β-catenin signaling pathway expression of OC cells by modulating miR-532-3p.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Gynaecology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yanlin Liu
- Department of Gynaecology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ping Liu
- Department of Reproductive Medicine, Hainan West Central Hospital, Danzhou, Hainan 571799, P.R. China
| | - Qiuxiang Dai
- Department of Obstetrical and Gynecology, Hainan Modern Women and Children's Hospital, Haikou, Hainan 570300, P.R. China
| | - Peiliang Wang
- Department of Gynaecology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
9
|
Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry 2021; 11:366. [PMID: 34226487 PMCID: PMC8257731 DOI: 10.1038/s41398-021-01492-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.
Collapse
Affiliation(s)
| | | | - Francesco Fornai
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy.
- Human Anatomy, Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa (PI), Italy.
| |
Collapse
|
10
|
Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2104131118. [PMID: 34074789 PMCID: PMC8201854 DOI: 10.1073/pnas.2104131118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We used Drosophila melanogaster to map the genetic basis of naturally occurring variation in voluntary consumption of cocaine and methamphetamine. We derived an outbred advanced intercross population (AIP) from 37 sequenced inbred wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), which are maximally genetically divergent, have minimal residual heterozygosity, are not segregating for common inversions, and are not infected with Wolbachia pipientis We assessed consumption of sucrose, methamphetamine-supplemented sucrose, and cocaine-supplemented sucrose and found considerable phenotypic variation for consumption of both drugs, in both sexes. We performed whole-genome sequencing and extreme quantitative trait locus (QTL) mapping on the top 10% of consumers for each replicate, sex, and condition and an equal number of randomly selected flies. We evaluated changes in allele frequencies among high consumers and control flies and identified 3,033 variants significantly (P < 1.9 × 10-8) associated with increased consumption, located in or near 1,962 genes. Many of these genes are associated with nervous system development and function, and 77 belong to a known gene-gene interaction subnetwork. We assessed the effects of RNA interference (RNAi) on drug consumption for 22 candidate genes; 17 had a significant effect in at least one sex. We constructed allele-specific AIPs that were homozygous for alternative candidate alleles for 10 single-nucleotide polymorphisms (SNPs) and measured average consumption for each population; 9 SNPs had significant effects in at least one sex. The genetic basis of voluntary drug consumption in Drosophila is polygenic and implicates genes with human orthologs and associated variants with sex- and drug-specific effects.
Collapse
|
11
|
Kitanaka N, Hall FS, Uhl GR, Kitanaka J. Lithium Pharmacology and a Potential Role of Lithium on Methamphetamine Abuse and Dependence. Curr Drug Res Rev 2020; 11:85-91. [PMID: 31875781 DOI: 10.2174/2589977511666190620141824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The effectiveness of lithium salts in neuropsychiatric disorders such as bipolar disorder, Alzheimer's disease, and treatment-resistant depression has been documented in an extensive scientific literature. Lithium inhibits inositol monophosphatase, inositol polyphosphate 1- phosphatase, and glycogen synthase kinase-3 and decreases expression level of tryptophan hydroxylase 2, conceivably underlying the mood stabilizing effects of lithium, as well as procognitive and neuroprotective effects. However, the exact molecular mechanisms of action of lithium on mood stabilizing and pro-cognitive effects in humans are still largely unknown. OBJECTIVE On the basis of the known aspects of lithium pharmacology, this review will discuss the possible mechanisms underlying the therapeutic effects of lithium on positive symptoms of methamphetamine abuse and dependence. CONCLUSION It is possible that lithium treatment reduces the amount of newly synthesized phosphatidylinositol, potentially preventing or reversing neuroadaptations contributing to behavioral sensitization induced by methamphetamine. In addition, it is suggested that exposure to repeated doses of methamphetamine induces hyperactivation of glycogen synthase kinase-3β in the nucleus accumbens and in dorsal hippocampus, resulting in a long-term alterations in synaptic plasticity underlying behavioral sensitization as well as other behavioral deficits in memory-related behavior. Therefore it is clear that glycogen synthase kinase-3β inhibitors can be considered as a potential candidate for the treatment of methamphetamine abuse and dependence.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Frank Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, United States
| | - George Richard Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, United States.,Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
12
|
Cuesta S, Funes A, Pacchioni AM. Social Isolation in Male Rats During Adolescence Inhibits the Wnt/β-Catenin Pathway in the Prefrontal Cortex and Enhances Anxiety and Cocaine-Induced Plasticity in Adulthood. Neurosci Bull 2020; 36:611-624. [PMID: 32078732 DOI: 10.1007/s12264-020-00466-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Abstract
In adult animals, it is well established that stress has a proactive effect on psychostimulant responses. However, whether only a short period of stress during adolescence can also affect cocaine responses later in life and what mechanisms are involved are unknown. Here, we showed that 5 days of social isolation during rat adolescence had a long-term impact on anxiety-like behaviors, cocaine-induced conditioned place preference, and the expression of sensitization during adulthood. At the molecular level, social isolation decreased the activity of the Wnt/β-catenin pathway in the prefrontal cortex (PFC). Furthermore, after the expression of cocaine sensitization, isolated rats showed an increase in this pathway in the nucleus accumbens. Together, these findings suggest that, adolescent social isolation by altering the Wnt/β-catenin pathway in the developing PFC might increase the cocaine responses during adulthood, introducing this pathway as a novel neuroadaptation in the cortical-accumbens connection that may mediate a stress-induced increase in vulnerability to drugs.
Collapse
Affiliation(s)
- Santiago Cuesta
- Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alejandrina Funes
- Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Alejandra M Pacchioni
- Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina.
| |
Collapse
|
13
|
Zhang X, Sun L, Wang L, Wang M, Lu G, Wang Y, Li Q, Li C, Zhou J, Ma H, Sun H. The effects of histone deacetylase inhibitors on the attentional set-shifting task performance of alcohol-dependent rats. Brain Res Bull 2019; 149:208-215. [PMID: 31029598 DOI: 10.1016/j.brainresbull.2019.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Alcohol dependence causes extensive damage to the central nervous system, resulting in impaired brain structure and behavioral changes. Moreover, histone deacetylase (HDAC) inhibitors restrain the activity of HDAC and cause increased histone acetylation, which may be related to alcohol dependence. METHODS Ethanol dependence was modelled in animals by persistent alcohol exposure and tested in the conditioned place preference (CPP) paradigm. To induce CPP, the alcohol-treated rats were given orally gradient concentration (3%, 6%, and 9% v/v) alcohol administration for 20 consecutive days. The sodium butyrate (NaB)-treated rats were injected daily. Cognitive flexibility was evaluated using an attentional set-shifting task (ASST) in which the rats performed a series of seven consecutive discriminations after the final CPP paradigm. RESULTS Ethanol administration induced alcohol dependence behaviors, with more time spent in the ethanol-paired compartment. Compared with the CPP scores of the control group, the scores of the ethanol- and NaB-treated groups were significantly higher. In the ASST, alcohol-treated rats had significantly increased number of trials to reach criteria (TTC) in most phases, higher error rate, and lower cognitive levels compared to the control group. Moreover, the present findings demonstrated that NaB combined with ethanol caused cognitive deficits as the result of an increased number of TTC during the ASST. CONCLUSIONS The attentional/cognitive flexibility of the prefrontal cortex of alcohol-dependent rats was damaged and the NaB administration procedure itself did not produce cognitive deficits, but instead exacerbated cognitive impairment in alcohol-dependent rats.
Collapse
Affiliation(s)
- Xianqiang Zhang
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Li Wang
- Department of Reproductive Medicine Center, Affiliated Hospital of Weifang Medical University, China
| | - Mengting Wang
- Department of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Yanyu Wang
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, China
| | - Changjiang Li
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Jin Zhou
- College of Pharmacy, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemsitry, Chinese Academy of Sciences, China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China.
| |
Collapse
|
14
|
Torres-Berrio A, Cuesta S, Lopez-Guzman S, Nava-Mesa MO. Interaction Between Stress and Addiction: Contributions From Latin-American Neuroscience. Front Psychol 2018; 9:2639. [PMID: 30622500 PMCID: PMC6308142 DOI: 10.3389/fpsyg.2018.02639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Drug addiction is a chronic neuropsychiatric disorder that escalates from an initial exposure to drugs of abuse, such as cocaine, cannabis, or heroin, to compulsive drug-seeking and intake, reduced ability to inhibit craving-induced behaviors, and repeated cycles of abstinence and relapse. It is well-known that chronic changes in the brain’s reward system play an important role in the neurobiology of addiction. Notably, environmental factors such as acute or chronic stress affect this system, and increase the risk for drug consumption and relapse. Indeed, the HPA axis, the autonomic nervous system, and the extended amygdala, among other brain stress systems, interact with the brain’s reward circuit involved in addictive behaviors. There has been a growing interest in studying the molecular, cellular, and behavioral mechanisms of stress and addiction in Latin-America over the last decade. Nonetheless, these contributions may not be as strongly acknowledged by the broad scientific audience as studies coming from developed countries. In this review, we compile for the first time a series of studies conducted by Latin American-based neuroscientists, who have devoted their careers to studying the interaction between stress and addiction, from a neurobiological and clinical perspective. Specific contributions about this interaction include the study of CRF receptors in the lateral septum, investigations on the neural mechanisms of cross-sensitization for psychostimulants and ethanol, the identification of the Wnt/β-catenin pathway as a critical neural substrate for stress and addiction, and the emergence of the cannabinoid system as a promising therapeutic target. We highlight animal and human studies, including for instance, reports coming from Latin American laboratories on single nucleotide polymorphisms in stress-related genes and potential biomarkers of vulnerability to addiction, that aim to bridge the knowledge from basic science to clinical research.
Collapse
Affiliation(s)
- Angélica Torres-Berrio
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Santiago Cuesta
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Silvia Lopez-Guzman
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
15
|
Identifying novel members of the Wntless interactome through genetic and candidate gene approaches. Brain Res Bull 2017; 138:96-105. [PMID: 28734904 DOI: 10.1016/j.brainresbull.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes.
Collapse
|
16
|
Li M, Xu P, Xu Y, Teng H, Tian W, Du Q, Zhao M. Dynamic Expression Changes in the Transcriptome of the Prefrontal Cortex after Repeated Exposure to Cocaine in Mice. Front Pharmacol 2017; 8:142. [PMID: 28386228 PMCID: PMC5362609 DOI: 10.3389/fphar.2017.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/07/2017] [Indexed: 01/07/2023] Open
Abstract
Prefrontal cortex (PFC)-dependent functions, such as executive function, explicit learning, and memory, are negatively affected in cocaine abusers and experimental animal models of cocaine treatment. However, its molecular mechanisms are less understood. In the present study, we performed transcriptome profiling of the dynamic changes in the PFC after repeated cocaine administration in mice. We found 463, 14, and 535 differentially expressed genes (DEGs) at 2 h, 24 h, and 7 days, respectively, after the withdrawal of chronic cocaine treatment. Time-series correlation analysis identified 5 clusters of statistically significant expression patterns. The expression levels of DEGs in Clusters 1 and 5 exhibited a gradual or fluctuant decrease, Cluster 2 exhibited an initial increase followed by a decrease or return to the baseline level, and Clusters 3 and 4 exhibited a fluctuant increase in the expression of DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that genes related to oxidative phosphorylation, ribosomes, and neurodegenerative disorder were enriched in Cluster 1; genes related to the mitogen activated protein kinase (MAPK), transforming growth factor (TGF)-β, insulin signaling, and circadian pathways were enriched in Cluster 2; genes related to plasticity-related pathways were enriched in Clusters 3 and 4; and genes related to the proteasome were enriched in Cluster 5. Our results suggest that maladaptive neural plasticity associated with psychostimulant dependence may be an ongoing degenerative process with dynamic changes in the gene network at different stages of withdrawal. Furthermore, it could be helpful to develop new therapeutic approaches according to different periods of abstinence.
Collapse
Affiliation(s)
- Mingzhen Li
- Key Lab of Mental Health, Institute of Psychology Chinese Academy of SciencesBeijing, China; Beijing Center for Physical and Chemical AnalysisBeijing, China
| | - Peng Xu
- Drug Intelligence and Forensic Center, Ministry of Public Security Beijing, China
| | - Yanhua Xu
- Key Lab of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Weiping Tian
- Key Lab of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing, China
| | - Quansheng Du
- Key Lab of Mental Health, Institute of Psychology Chinese Academy of SciencesBeijing, China; Department of Life Sciences, National Natural Science Foundation of ChinaBeijing, China
| | - Mei Zhao
- Key Lab of Mental Health, Institute of Psychology Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|