1
|
Li X, Jiang S, Jiang T, Sun X, Guan Y, Fan S, Cheng Y. LEM Domain Containing 1 Acts as a Novel Oncogene and Therapeutic Target for Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15112924. [PMID: 37296887 DOI: 10.3390/cancers15112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is the most common deadly malignancy in women worldwide. In particular, triple-negative breast cancer (TNBC) exhibits the worst prognosis among four subtypes of breast cancer due to limited treatment options. Exploring novel therapeutic targets holds promise for developing effective treatments for TNBC. Here, we demonstrated for the first time that LEMD1 (LEM domain containing 1) is highly expressed in TNBC and contributes to reduced survival in TNBC patients, through analysis of both bioinformatic databases and collected patient samples. Furthermore, LEMD1 silencing not only inhibited the proliferation and migration of TNBC cells in vitro, but also abolished tumor formation of TNBC cells in vivo. Knockdown of LEMD1 enhanced the sensitivity of TNBC cells to paclitaxel. Mechanistically, LEMD1 promoted the progress of TNBC by activating the ERK signaling pathway. In summary, our study revealed that LEMD1 may act as a novel oncogene in TNBC, and targeting LEMD1 may be exploited as a promising therapeutic approach to enhance the efficacy of chemotherapy against TNBC.
Collapse
Affiliation(s)
- Xiangling Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Shilong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinyuan Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yidi Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| |
Collapse
|
2
|
Gabriel KA, Streicher JM. HSP90 inhibition in the mouse spinal cord enhances opioid signaling by suppressing an AMPK-mediated negative feedback loop. Sci Signal 2023; 16:eade2438. [PMID: 37040443 PMCID: PMC11010773 DOI: 10.1126/scisignal.ade2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Opioids and other agonists of the μ-opioid receptor are effective at managing acute pain, but their chronic use can lead to tolerance that limits their efficacy. We previously reported that inhibiting the chaperone protein HSP90 in the spinal cords of mice promotes the antinociceptive effects of opioids in a manner that involved increased activation of the kinase ERK. Here, we found that the underlying mechanism involves the relief of a negative feedback loop mediated by the kinase AMPK. Intrathecal treatment of male and female mice with the HSP90 inhibitor 17-AAG decreased the abundance of the β1 subunit of AMPK in the spinal cord. The antinociceptive effects of 17-AAG with morphine were suppressed by intrathecal administration of AMPK activators and enhanced by an AMPK inhibitor. Opioid treatment increased the abundance of phosphorylated AMPK in the dorsal horn of the spinal cord, where it colocalized with a neuronal marker and the neuropeptide CGRP. Knocking down AMPK in CGRP-positive neurons enhanced the antinociceptive effects of morphine and demonstrated that AMPK mediated the signal transduction between HSP90 inhibition and ERK activation. These data suggest that AMPK mediates an opioid-induced negative feedback loop in CGRP neurons of the spinal cord and that this loop can be disabled by HSP90 inhibition to enhance the efficacy of opioids.
Collapse
Affiliation(s)
- Katherin A. Gabriel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson AZ USA
| |
Collapse
|
3
|
Intisar A, Woo H, Kang HG, Kim WH, Shin HY, Kim MY, Kim YS, Mo YJ, Lee YI, Kim MS. Electroceutical approach ameliorates intracellular PMP22 aggregation and promotes pro-myelinating pathways in a CMT1A in vitro model. Biosens Bioelectron 2023; 224:115055. [PMID: 36630746 DOI: 10.1016/j.bios.2022.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease subtype 1A (CMT1A) is one of the most prevalent demyelinating peripheral neuropathies worldwide, caused by duplication of the peripheral myelin protein 22 (PMP22) gene, which is expressed primarily in Schwann cells (SCs). PMP22 overexpression in SCs leads to intracellular aggregation of the protein, which eventually results in demyelination. Unfortunately, previous biochemical approaches have not resulted in an approved treatment for CMT1A disease, compelling the pursuit for a biophysical approach such as electrical stimulation (ES). However, the effects of ES on CMT1A SCs have remained unexplored. In this study, we established PMP22-overexpressed Schwannoma cells as a CMT1A in vitro model, and investigated the biomolecular changes upon applying ES via a custom-made high-throughput ES platform, screening for the condition that delivers optimal therapeutic effects. While PMP22-overexpressed Schwannoma exhibited intracellular PMP22 aggregation, ES at 20 Hz for 1 h improved this phenomenon, bringing PMP22 distribution closer to healthy condition. ES at this condition also enhanced the expression of the genes encoding myelin basic protein (MBP) and myelin-associated glycoprotein (MAG), which are essential for assembling myelin sheath. Furthermore, ES altered the gene expression for myelination-regulating transcription factors Krox-20, Oct-6, c-Jun and Sox10, inducing pro-myelinating effects in PMP22-overexpressed Schwannoma. While electroceuticals has previously been applied in the peripheral nervous system towards acquired peripheral neuropathies such as pain and nerve injury, this study demonstrates its effectiveness towards ameliorating biomolecular abnormalities in an in vitro model of CMT1A, an inherited peripheral neuropathy. These findings will facilitate the clinical translation of an electroceutical treatment for CMT1A.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hanwoong Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyun Gyu Kang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Woon-Hae Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea; CTCELLS Corp., Daegu, 42988, Republic of Korea
| | - Hyun Young Shin
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea; CTCELLS Corp., Daegu, 42988, Republic of Korea; SBCure Corp., Daegu, 43017, Republic of Korea
| | - Min Young Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Yu Seon Kim
- Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Minseok S Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea; CTCELLS Corp., Daegu, 42988, Republic of Korea; Translational Responsive Medicine Center (TRMC), DGIST, Daegu, 42988, Republic of Korea; New Biology Research Center (NBRC), DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
4
|
Abel T, Kim J, Vanrobaeys Y, Peterson Z, Kelvington B, Gaine M, Nickl-Jockschat T. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders. RESEARCH SQUARE 2023:rs.3.rs-2565823. [PMID: 36824977 PMCID: PMC9949238 DOI: 10.21203/rs.3.rs-2565823/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and identified 3 genes of particular importance within the deleted region: thousand and one amino acid protein kinase 2 (Taok2), seizure-related 6 homolog-like 2 (Sez6l2), and major vault protein (Mvp). Using the CRISPR/Cas9 technique, we generated 3 gene hemi-deletion (3g del/+) mice carrying null mutations in Taok2, Sez6l2, and Mvp. We assessed striatum-dependent phenotypes of these 3g del/+ mice in behavioral, molecular, and imaging studies. Hemi-deletion of Taok2, Sez6l2, and Mvp induces sex-specific behavioral alterations in striatum-dependent behavioral tasks, specifically male-specific hyperactivity and impaired motivation for reward seeking, resembling behavioral phenotypes of 16p11.2 del/+ mice. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice, but only in males. Pathway analysis identified ribosomal dysfunction and translation dysregulation as molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice, unlike single gene mutation studies. These results support the importance of a polygenic approach to study NDDs and our novel strategy to identify genes of interest using gene expression patterns in brain regions, such as the striatum, which are impacted in these disorders.
Collapse
|
5
|
Kim J, Vanrobaeys Y, Peterson Z, Kelvington B, Gaine ME, Nickl-Jockschat T, Abel T. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527866. [PMID: 36798381 PMCID: PMC9934710 DOI: 10.1101/2023.02.09.527866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and identified 3 genes of particular importance within the deleted region: thousand and one amino acid protein kinase 2 ( Taok2 ), seizure-related 6 homolog-like 2 ( Sez6l2 ), and major vault protein ( Mvp ). Using the CRISPR/Cas9 technique, we generated 3 gene hemi-deletion (3g del/+) mice carrying null mutations in Taok2, Sez6l2 , and Mvp . We assessed striatum-dependent phenotypes of these 3g del/+ mice in behavioral, molecular, and imaging studies. Hemi-deletion of Taok2, Sez6l2 , and Mvp induces sex-specific behavioral alterations in striatum-dependent behavioral tasks, specifically male-specific hyperactivity and impaired motivation for reward seeking, resembling behavioral phenotypes of 16p11.2 del/+ mice. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice, but only in males. Pathway analysis identified ribosomal dysfunction and translation dysregulation as molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice, unlike single gene mutation studies. These results support the importance of a polygenic approach to study NDDs and our novel strategy to identify genes of interest using gene expression patterns in brain regions, such as the striatum, which are impacted in these disorders.
Collapse
|
6
|
Rawlings-Mortimer F, Gullino LS, Rühling S, Ashton A, Barkus C, Johansen-Berg H. DUSP15 expression is reduced in the hippocampus of Myrf knock-out mice but attention and object recognition memory remain intact. PLoS One 2023; 18:e0281264. [PMID: 36730342 PMCID: PMC9894471 DOI: 10.1371/journal.pone.0281264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
The atypical protein tyrosine phosphatase enzyme, dual-specificity phosphate 15 (DUSP15) is thought to be activated by myelin regulatory factor (MyRF) and to have a role in oligodendrocyte differentiation. Here, we assess whether Dusp15 is reduced in the hippocampus of mice with conditional knock-out of Myrf in oligodendrocyte precursor cells. Using quantitative polymerase chain reaction (qPCR) we found that Dusp15 expression was indeed lower in these mice. Alterations in myelin have been associated with Alzheimer's disease (AD), autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Symptoms of these disorders can include impairments of object recognition and attention. We, therefore tested the mice in the object recognition task (ORT) and 5-choice serial reaction time task (5CSRTT). However, we did not find behavioural impairments indicating that attentional abilities and object recognition are not impacted by reduced oligodendrogenesis and hippocampal Dusp15 expression. Gaining insight into the role of newly formed oligodendrocytes and Dusp15 expression is helpful for the development of well targeted treatments for myelin dysregulation.
Collapse
Affiliation(s)
- Florence Rawlings-Mortimer
- Wellcome Centre for Integrative Neuroimaging, Nuffield Dept of Clinical Neurosciences, Oxford, United Kingdom
| | - L Sophie Gullino
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Sebastian Rühling
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anna Ashton
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Dept of Clinical Neurosciences, Oxford, United Kingdom
| |
Collapse
|
7
|
Association between Genetic Variants in DUSP15, CNTNAP2, and PCDHA Genes and Risk of Childhood Autism Spectrum Disorder. Behav Neurol 2021; 2021:4150926. [PMID: 34257739 PMCID: PMC8261179 DOI: 10.1155/2021/4150926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Genetic factors play an important role in the development of autism spectrum disorder (ASD). This case-control study was to determine the association between childhood ASD and single nucleotide polymorphisms (SNPs) rs3746599 in the DUSP15 gene, rs7794745 in the CNTNAP2 gene, and rs251379 in the PCDHA gene in a Chinese Han population. Methods Genotypes of SNPs were examined in DNA extracted from blood cells from 201 children with ASD and 200 healthy controls. The Children Autism Rating Scale (CARS) was applied to evaluate the severity of the disease and language impairment. The relationship between SNPs and the risk of ASD or the severity of the disease was determined by logistic regression and one-way ANOVA. Results The genotype G/G of rs3746599 in the DUSP15 gene was significantly associated with a decreased risk of ASD (odds ratio (OR) = 0.65, 95% confidence interval (CI): 0.42-0.99, P = 0.0449). The T allele of rs7794745 in the CNTNAP2 gene was associated with an increased risk of ASD (OR = 1.34, 95% CI: 1.01-1.77, P = 0.0435). The SNP rs251379 was not associated with ASD. Though none of the SNPs examined were associated with ASD severity, rs7794745 was associated with severity of language impairment. Conclusions Our findings suggest that both rs3746599 in the DUSP15 gene and rs7794745 in the CNTNAP2 gene are associated with risk of childhood ASD, and rs7794745 is also related to the severity of language impairment in autistic children from a Chinese Han population.
Collapse
|
8
|
Bhore N, Wang BJ, Wu PF, Lee YL, Chen YW, Hsu WM, Lee H, Huang YS, Yang DI, Liao YF. Dual-Specificity Phosphatase 15 (DUSP15) Modulates Notch Signaling by Enhancing the Stability of Notch Protein. Mol Neurobiol 2021; 58:2204-2214. [PMID: 33417224 DOI: 10.1007/s12035-020-02254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Dual-specificity phosphatases (DUSPs) comprise a unique group of enzymes that dephosphorylate signaling proteins at both phospho-serine/threonine and phospho-tyrosine residues. Since Notch signaling is an essential pathway for neuronal cell fate determination and development that is also upregulated in Alzheimer's disease tissues, we sought to explore whether and how DUSPs may impact Notch processing. Our results show that overexpression of DUSP15 concomitantly and dose-dependently increased the steady-state levels of recombinant Notch (extracellular domain-truncated Notch, NotchΔE) protein and its cleaved product, Notch intracellular domain (NICD). The overall ratio of NotchΔE to NICD was unchanged by overexpression of DUSP15, suggesting that the effect is independent of γ-secretase. Interestingly, overexpression of DUSP15 also dose-dependently increased phosphorylated ERK1/2. Phosphorylated ERK1/2 is known to be positively correlated with Notch protein level, and we found that DUSP15-mediated regulation of Notch was dependent on ERK1/2 activity. Together, our findings reveal the existence of a previously unidentified DUSP15-ERK1/2-Notch signaling axis, which could potentially play a role in neuronal differentiation and neurological disease.
Collapse
Affiliation(s)
- Noopur Bhore
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
| | - Bo-Jeng Wang
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
| | - Po-Fan Wu
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University, Academia Sinica, Taipei, Taiwan
| | - Yen-Lurk Lee
- TIGP in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Wen Chen
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Shuian Huang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University, Academia Sinica, Taipei, Taiwan
- TIGP in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ding-I Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Feng Liao
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd, Taipei, 11529, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University, Academia Sinica, Taipei, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Won SY, Kwon S, Jeong HS, Chung KW, Choi B, Chang JW, Lee JE. Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells 2020; 38:1578-1593. [PMID: 33107705 PMCID: PMC7756588 DOI: 10.1002/stem.3287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 04/25/2023]
Abstract
In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Soojin Kwon
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Hui Su Jeong
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
10
|
Buiga P, Elson A, Tabernero L, Schwartz JM. Modelling the role of dual specificity phosphatases in herceptin resistant breast cancer cell lines. Comput Biol Chem 2019; 80:138-146. [PMID: 30952040 DOI: 10.1016/j.compbiolchem.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/23/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Breast cancer remains the most lethal type of cancer for women. A significant proportion of breast cancer cases are characterised by overexpression of the human epidermal growth factor receptor 2 protein (HER2). These cancers are commonly treated by Herceptin (Trastuzumab), but resistance to drug treatment frequently develops in tumour cells. Dual-specificity phosphatases (DUSPs) are thought to play a role in the mechanism of resistance, since some of them were reported to be overexpressed in tumours resistant to Herceptin. RESULTS We used a systems biology approach to investigate how DUSP overexpression could favour cell proliferation and to predict how this mechanism could be reversed by targeted inhibition of selected DUSPs. We measured the expression of 20 DUSP genes in two breast cancer cell lines following long-term (6 months) exposure to Herceptin, after confirming that these cells had become resistant to the drug. We constructed several Boolean models including specific substrates of each DUSP, and showed that our models correctly account for resistance when overexpressed DUSPs were kept activated. We then simulated inhibition of both individual and combinations of DUSPs, and determined conditions under which the resistance could be reversed. CONCLUSIONS These results show how a combination of experimental analysis and modelling help to understand cell survival mechanisms in breast cancer tumours, and crucially enable us to generate testable predictions potentially leading to new treatments of resistant tumours.
Collapse
Affiliation(s)
- Petronela Buiga
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|