1
|
Valdebenito S, Ajasin D, Valerdi K, Liu YR, Rao S, Eugenin EA. Mechanisms of Intracellular Communication in Cancer and Pathogen Spreading. Results Probl Cell Differ 2024; 73:301-326. [PMID: 39242384 DOI: 10.1007/978-3-031-62036-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Cell-to-cell interactions are essential for proper development, homeostasis, and complex syncytia/organ formation and function. Intercellular communication are mediated by multiple mechanisms including soluble mediators, adhesion molecules and specific mechanisms of cell to cell communication such as Gap junctions (GJ), tunneling nanotubes (TNT), and exosomes. Only recently, has been discovered that TNTs and exosomes enable the exchange of large signaling molecules, RNA, viral products, antigens, and organelles opening new avenues of research and therapeutic approaches. The focus of this review is to summarize these recent findings in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - David Ajasin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Karl Valerdi
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | - Samvrit Rao
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
2
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
3
|
D'Amico D, Valdebenito S, Eugenin EA. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus. Purinergic Signal 2021; 17:563-576. [PMID: 34542793 DOI: 10.1007/s11302-021-09817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Briski KP, Ibrahim MMH, Mahmood ASMH, Alshamrani AA. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism. Int J Mol Sci 2021; 22:ijms22020759. [PMID: 33451134 PMCID: PMC7828624 DOI: 10.3390/ijms22020759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy source to blood-derived glucose. VMN astrocytes are direct targets for metabolic stimulus-driven noradrenergic signaling due to their adrenergic receptor expression (AR). The current review discusses recent affirmative evidence that neuro-metabolic stability in the VMN may be shaped by NE influence on astrocyte glycogen metabolism and glycogen-derived substrate fuel supply. Noradrenergic modulation of estrogen receptor (ER) control of VMN glycogen phosphorylase (GP) isoform expression supports the interaction of catecholamine and estradiol signals in shaping the physiological stimulus-specific control of astrocyte glycogen mobilization. Sex-dimorphic NE control of glycogen synthase and GP brain versus muscle type proteins may be due, in part, to the dissimilar noradrenergic governance of astrocyte AR and ER variant profiles in males versus females. Forthcoming advances in the understanding of the molecular mechanistic framework for catecholamine stimulus integration with other regulatory inputs to VMN astrocytes will undoubtedly reveal useful new molecular targets in each sex for glycogen mediated defense of neuronal metabolic equilibrium during neuro-glucopenia.
Collapse
|
5
|
Møller M. Vasopressin and oxytocin beyond the pituitary in the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:7-24. [PMID: 34225951 DOI: 10.1016/b978-0-12-820107-7.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vasopressin and oxytocin are primarily synthesized in the magnocellular supraoptic and paraventricular nuclei of the hypothalamus and transported to the posterior pituitary. In the human, an extensive accessory magnocellular neuroendocrine system is present with contact to the posterior pituitary and blood vessels in the hypothalamus itself. Vasopressin and oxytocin are involved in social and behavioral functions. However, only few neocortical areas are targeted by vasopressinergic and oxytocinergic nerve fibers, which mostly project to limbic areas in the forebrain, where also their receptors are located. Vasopressinergic/oxytocinergic perikarya in the forebrain project to the brain stem and spinal cord targeting nuclei and areas involved in autonomic functions. Parvocellular neurons containing vasopressin are located in the suprachiasmatic nucleus and synchronize the activity of the pacemaker in this nucleus. From the suprachiasmatic nucleus fibers project to the parvocellular part of the paraventricular nucleus, where preautonomic neurons project to the intermediolateral nucleus in the thoracic spinal cord, from where the superior cervical ganglion is reached whose noradrenergic fibers terminate in the pineal gland to stimulate melatonin secretion at night. The pineal gland is also innervated by vasopressin- and oxytocin-containing fibers reaching the gland via the "central innervation" in the pineal stalk, which might be involve in an annual regulation of melatonin secretion.
Collapse
Affiliation(s)
- Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhang Y, Zhou B, Wen M, Hu M, Peng JG, Wang Y, Fan LL, Tang L. ZG02 Improved Hepatic Glucose Metabolism and Insulin Sensitivity via Activation of AMPK/Sirt1 Signaling Pathways in a High-fat Diet/Streptozotocin-induced Type 2 Diabetes Model. Diabetes Metab Syndr Obes 2020; 13:4333-4339. [PMID: 33209046 PMCID: PMC7670175 DOI: 10.2147/dmso.s275145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of the present study was to investigate the hypoglycemic activity and potential mechanism of tetrahydrocarbazole derivatives ZG02 in high-fat diet/streptozotocin-induced type 2 diabetes model. METHODS C57BL/6 mice (n=30) were randomly assigned to three groups: control group (n=10) was fed with normal diet, the diabetes group (n=10) was fed with high-fat diet for eight weeks followed by intraperitoneal injection of streptozotocin (25 mg/kg) and the ZG02 group (n=10) injected intraperitoneally with ZG02 (30 mg/kg/day) for two weeks after successful modeling. The changes of weight, fasting blood glucose, oral glucose tolerance and fasting blood insulin levels in each group were evaluated. In addition, we also assessed the expression level of total AMPK, phosphorylation AMPK, SIRT1, PGC-1 and the activity of G6PC in liver. RESULTS The results demonstrated that ZG02 could significantly antagonize the high-fat diet/streptozotocin-induced fasting hyperglycemia, restore fasting blood insulin levels and also improve activity of G6PC in liver. The results from Western blot indicated that ZG02 significantly restored the expression level of phosphorylation AMPK, Sirt1 and PGC-1. CONCLUSION ZG02 improve hepatic glucose metabolism and insulin sensitivity via activation AMPK/Sirt1 signaling pathways in type 2 diabetes mice model.
Collapse
Affiliation(s)
- Yi Zhang
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
- Engineering Technology Research Center for Chemical Drug R&D, Guizhou550004, People’s Republic of China
- College of Pharmacy, Guizhou Medical University, Guizhou550004, People’s Republic of China
| | - Bo Zhou
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
- Engineering Technology Research Center for Chemical Drug R&D, Guizhou550004, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou550004, People’s Republic of China
| | - Min Wen
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
| | - Mi Hu
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
| | - Jin-Gang Peng
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
- Engineering Technology Research Center for Chemical Drug R&D, Guizhou550004, People’s Republic of China
- College of Pharmacy, Guizhou Medical University, Guizhou550004, People’s Republic of China
| | - Ying Wang
- College of Pharmacy, Guizhou Medical University, Guizhou550004, People’s Republic of China
| | - Lin-Lin Fan
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
- Engineering Technology Research Center for Chemical Drug R&D, Guizhou550004, People’s Republic of China
- College of Pharmacy, Guizhou Medical University, Guizhou550004, People’s Republic of China
| | - Lei Tang
- College of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550004, People’s Republic of China
- Engineering Technology Research Center for Chemical Drug R&D, Guizhou550004, People’s Republic of China
- College of Pharmacy, Guizhou Medical University, Guizhou550004, People’s Republic of China
| |
Collapse
|