1
|
Li H, Pham MC, Teng J, O'Connor KC, Noviello CM, Hibbs RE. Autoimmune mechanisms elucidated through muscle acetylcholine receptor structures. Cell 2025:S0092-8674(25)00277-6. [PMID: 40203823 DOI: 10.1016/j.cell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Skeletal muscle contraction is triggered by acetylcholine (ACh) binding to its ionotropic receptors (AChRs) at neuromuscular junctions. In myasthenia gravis (MG), autoantibodies target AChRs, disrupting neurotransmission and causing muscle weakness. While treatments exist, variable patient responses suggest pathogenic heterogeneity. Progress in understanding the molecular basis of MG has been limited by the absence of structures of intact human muscle AChRs. Here, we present high-resolution cryoelectron microscopy (cryo-EM) structures of the human adult AChR in different functional states. Using six MG patient-derived monoclonal antibodies, we mapped distinct epitopes involved in diverse pathogenic mechanisms, including receptor blockade, internalization, and complement activation. Electrophysiological and binding assays revealed how these autoantibodies directly inhibit AChR channel activation. These findings provide critical insights into MG immunopathogenesis, uncovering unrecognized antibody epitope diversity and modes of receptor inhibition, and provide a framework for developing personalized therapies targeting antibody-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Balcerek M, Pacheco-Pozo A, Wyłomańska A, Burnecki K, Krapf D. Two-dimensional Brownian motion with dependent components: Turning angle analysis. CHAOS (WOODBURY, N.Y.) 2025; 35:023166. [PMID: 40009118 DOI: 10.1063/5.0227369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Brownian motion in one or more dimensions is extensively used as a stochastic process to model natural and engineering signals, as well as financial data. Most works dealing with multidimensional Brownian motion consider the different dimensions as independent components. In this article, we investigate a model of correlated Brownian motion in R2, where the individual components are not necessarily independent. We explore various statistical properties of the process under consideration, going beyond the conventional analysis of the second moment. Our particular focus lies on investigating the distribution of turning angles. This distribution reveals particularly interesting characteristics for processes with dependent components that are relevant to applications in diverse physical systems. Theoretical considerations are supported by numerical simulations and analysis of two real-world datasets: the financial data of the Dow Jones Industrial Average and the Standard and Poor's 500, and trajectories of polystyrene beads in water. Finally, we show that the model can be readily extended to trajectories with correlations that change over time.
Collapse
Affiliation(s)
- Michał Balcerek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Adrian Pacheco-Pozo
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Agnieszka Wyłomańska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Krzysztof Burnecki
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Diego Krapf
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
3
|
Saavedra LA, Mosqueira A, Barrantes FJ. A supervised graph-based deep learning algorithm to detect and quantify clustered particles. NANOSCALE 2024; 16:15308-15318. [PMID: 39082742 DOI: 10.1039/d4nr01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Considerable efforts are currently being devoted to characterizing the topography of membrane-embedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.
Collapse
Affiliation(s)
- Lucas A Saavedra
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| | - Alejo Mosqueira
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
4
|
Barrantes FJ. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 2024; 11:1328875. [PMID: 38274273 PMCID: PMC10808158 DOI: 10.3389/fcell.2023.1328875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
6
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Saavedra LA, Buena-Maizón H, Barrantes FJ. Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. Int J Mol Sci 2022; 23:ijms231810435. [PMID: 36142349 PMCID: PMC9499342 DOI: 10.3390/ijms231810435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The cell-surface topography and density of nicotinic acetylcholine receptors (nAChRs) play a key functional role in the synapse. Here we employ in parallel two labeling and two super-resolution microscopy strategies to characterize the distribution of this receptor at the plasma membrane of the mammalian clonal cell line CHO-K1/A5. Cells were interrogated with two targeted techniques (confocal microscopy and stimulated emission depletion (STED) nanoscopy) and single-molecule nanoscopy (stochastic optical reconstruction microscopy, STORM) using the same fluorophore, Alexa Fluor 647, tagged onto either α-bungarotoxin (BTX) or the monoclonal antibody mAb35. Analysis of the topography of nanometer-sized aggregates (“nanoclusters”) was carried out using STORMGraph, a quantitative clustering analysis for single-molecule localization microscopy based on graph theory and community detection, and ASTRICS, an inter-cluster similarity algorithm based on computational geometry. Antibody-induced crosslinking of receptors resulted in nanoclusters with a larger number of receptor molecules and higher densities than those observed in BTX-labeled samples. STORM and STED provided complementary information, STED rendering a direct map of the mesoscale nAChR distribution at distances ~10-times larger than the nanocluster centroid distances measured in STORM samples. By applying photon threshold filtering analysis, we show that it is also possible to detect the mesoscale organization in STORM images.
Collapse
|
8
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
9
|
Barrantes FJ. Fluorescence Studies of Nicotinic Acetylcholine Receptor and Its Associated Lipid Milieu: The Influence of Erwin London's Methodological Approaches. J Membr Biol 2022; 255:563-574. [PMID: 35534578 DOI: 10.1007/s00232-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Dunlap T, Cao Y. Physiological Considerations for Modeling in vivo Antibody-Target Interactions. Front Pharmacol 2022; 13:856961. [PMID: 35281913 PMCID: PMC8912916 DOI: 10.3389/fphar.2022.856961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The number of therapeutic antibodies in development pipelines is increasing rapidly. Despite superior success rates relative to small molecules, therapeutic antibodies still face many unique development challenges. There is often a translational gap from their high target affinity and specificity to the therapeutic effects. Tissue microenvironment and physiology critically influence antibody-target interactions contributing to apparent affinity alterations and dynamic target engagement. The full potential of therapeutic antibodies will be further realized by contextualizing antibody-target interactions under physiological conditions. Here we review how local physiology such as physical stress, biological fluid, and membrane characteristics could influence antibody-target association, dissociation, and apparent affinity. These physiological factors in the early development of therapeutic antibodies are valuable toward rational antibody engineering, preclinical candidate selection, and lead optimization.
Collapse
Affiliation(s)
- Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Vallés AS, Barrantes FJ. Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment. Biomolecules 2021; 11:1697. [PMID: 34827695 PMCID: PMC8615865 DOI: 10.3390/biom11111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Compartmentalization of the membrane is essential for cells to perform highly specific tasks and spatially constrained biochemical functions in topographically defined areas. These membrane lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains. Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from minutes to days. This panoply of lateral domains subserves the great variety of demands of cell physiology, particularly high for those implicated in signaling. The dendritic spine, a subcellular structure of neurons at the receiving (postsynaptic) end of central nervous system excitatory synapses, exploits this compartmentalization principle. In its most frequent adult morphology, the mushroom-shaped spine harbors neurotransmitter receptors, enzymes, and scaffolding proteins tightly packed in a volume of a few femtoliters. In addition to constituting a mesoscopic lateral heterogeneity of the dendritic arborization, the dendritic spine postsynaptic membrane is further compartmentalized into spatially delimited nanodomains that execute separate functions in the synapse. This review discusses the functional relevance of compartmentalization and nanodomain organization in synaptic transmission and plasticity and exemplifies the importance of this parcelization in various neurotransmitter signaling systems operating at dendritic spines, using two fast ligand-gated ionotropic receptors, the nicotinic acetylcholine receptor and the glutamatergic receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as paradigmatic examples.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
13
|
Maizón HB, Barrantes FJ. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform 2021; 23:6409696. [PMID: 34695840 DOI: 10.1093/bib/bbab435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
Collapse
Affiliation(s)
- Héctor Buena Maizón
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
14
|
Paz ML, Barrantes FJ. Cholesterol in myasthenia gravis. Arch Biochem Biophys 2021; 701:108788. [PMID: 33548213 DOI: 10.1016/j.abb.2021.108788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
The cholinergic neuromuscular junction is the paradigm peripheral synapse between a motor neuron nerve ending and a skeletal muscle fiber. In vertebrates, acetylcholine is released from the presynaptic site and binds to the nicotinic acetylcholine receptor at the postsynaptic membrane. A variety of pathologies among which myasthenia gravis stands out can impact on this rapid and efficient signaling mechanism, including autoimmune diseases affecting the nicotinic receptor or other synaptic proteins. Cholesterol is an essential component of biomembranes and is particularly rich at the postsynaptic membrane, where it interacts with and modulates many properties of the nicotinic receptor. The profound changes inflicted by myasthenia gravis on the postsynaptic membrane necessarily involve cholesterol. This review analyzes some aspects of myasthenia gravis pathophysiology and associated postsynaptic membrane dysfunction, including dysregulation of cholesterol metabolism in the myocyte brought about by antibody-receptor interactions. In addition, given the extensive therapeutic use of statins as the typical cholesterol-lowering drugs, we discuss their effects on skeletal muscle and the possible implications for MG patients under chronic treatment with this type of compound.
Collapse
Affiliation(s)
- Mariela L Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA, CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Barrantes FJ. Possible implications of dysregulated nicotinic acetylcholine receptor diffusion and nanocluster formation in myasthenia gravis. Neural Regen Res 2021; 16:242-246. [PMID: 32859770 PMCID: PMC7896218 DOI: 10.4103/1673-5374.290880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myasthenia gravis is a rare and invalidating disease affecting the neuromuscular junction of voluntary muscles. The classical form of this autoimmune disease is characterized by the presence of antibodies against the most abundant protein in the neuromuscular junction, the nicotinic acetylcholine receptor. Other variants of the disease involve autoimmune attack of non-receptor scaffolding proteins or enzymes essential for building or maintaining the integrity of this peripheral synapse. This review summarizes the participation of the above proteins in building the neuromuscular junction and the destruction of this cholinergic synapse by autoimmune aggression in myasthenia gravis. The review also covers the application of a powerful biophysical technique, superresolution optical microscopy, to image the nicotinic receptor in live cells and follow its motional dynamics. The hypothesis is entertained that anomalous nanocluster formation by antibody crosslinking may lead to accelerated endocytic internalization and elevated turnover of the receptor, as observed in myasthenia gravis.
Collapse
|