1
|
Silva A, Prior R, D'Antonio M, Swinnen JV, Van Den Bosch L. Lipid metabolism alterations in peripheral neuropathies. Neuron 2025:S0896-6273(25)00262-4. [PMID: 40311611 DOI: 10.1016/j.neuron.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Alterations in lipid metabolism are increasingly recognized as central pathological hallmarks of inherited and acquired peripheral neuropathies. Correct lipid balance is critical for cellular homeostasis. However, the mechanisms linking lipid disturbances to cellular dysfunction and whether these changes are primary drivers or secondary effects of disease remain unresolved. This is particularly relevant in the peripheral nervous system, where the lipid-rich myelin integrity is critical for axonal function, and even subtle perturbations can cause widespread effects. This review explores the role of lipids as structural components as well as signaling molecules, emphasizing their metabolic role in peripheral neurons and Schwann cells. Additionally, we explore the genetic and environmental connections in both inherited and acquired peripheral neuropathies, respectively, which are known to affect lipid metabolism in peripheral neurons or Schwann cells. Overall, we highlight how understanding lipid-centric mechanisms could advance biomarker discovery and therapeutic interventions for peripheral nerve disorders.
Collapse
Affiliation(s)
- Alessio Silva
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Robert Prior
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
2
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Pondelick AM, Moncayo LV, Donvito G, McLane VD, Gillespie JC, Hauser KF, Spiegel S, Lichtman AH, Sim-Selley LJ, Selley DE. Dissociation between the anti-allodynic effects of fingolimod (FTY720) and desensitization of S1P 1 receptor-mediated G-protein activation in a mouse model of sciatic nerve injury. Neuropharmacology 2024; 261:110165. [PMID: 39303855 PMCID: PMC12057498 DOI: 10.1016/j.neuropharm.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.
Collapse
Affiliation(s)
- Abby M Pondelick
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren V Moncayo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
4
|
Lötsch J, Gasimli K, Malkusch S, Hahnefeld L, Angioni C, Schreiber Y, Trautmann S, Wedel S, Thomas D, Ferreiros Bouzas N, Brandts CH, Schnappauf B, Solbach C, Geisslinger G, Sisignano M. Machine learning and biological validation identify sphingolipids as potential mediators of paclitaxel-induced neuropathy in cancer patients. eLife 2024; 13:RP91941. [PMID: 39347767 PMCID: PMC11444680 DOI: 10.7554/elife.91941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy. Methods High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy. Results Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy. Conclusions Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects. Funding This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Khayal Gasimli
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Nerea Ferreiros Bouzas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Christian H Brandts
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, University Cancer Center Frankfurt (UCT), Goethe University Hospital, Frankfurt, Germany
| | | | - Christine Solbach
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
5
|
Yeung N, Li T, Lin HM, Timmins HC, Goldstein D, Harrison M, Friedlander M, Mahon KL, Giles C, Meikle PJ, Park SB, Horvath LG. Plasma Lipidomic Profiling Identifies Elevated Triglycerides as Potential Risk Factor in Chemotherapy-Induced Peripheral Neuropathy. JCO Precis Oncol 2024; 8:e2300690. [PMID: 38691814 DOI: 10.1200/po.23.00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of cytotoxic cancer treatment, often necessitating dose reduction (DR) or chemotherapy discontinuation (CD). Studies on peripheral neuropathy related to chemotherapy, obesity, and diabetes have implicated lipid metabolism. This study examined the association between circulating lipids and CIPN. METHODS Lipidomic analysis was performed on plasma samples from 137 patients receiving taxane-based treatment. CIPN was graded using Total Neuropathy Score-clinical version (TNSc) and patient-reported outcome measure European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-CIPN (EORTC-QLQ-CIPN20). RESULTS A significant proportion of elevated baseline lipids were associated with high-grade CIPN defined by TNSc and EORTC-QLQ-CIPN20 including triacylglycerols (TGs). Multivariable Cox regression on lipid species, adjusting for BMI, age, and diabetes, showed several elevated baseline TG associated with shorter time to DR/CD. Latent class analysis identified two baseline lipid profiles with differences in risk of CIPN (hazard ratio, 2.80 [95% CI, 1.50 to 5.23]; P = .0013). The higher risk lipid profile had several elevated TG species and was independently associated with DR/CD when modeled with other clinical factors (diabetes, age, BMI, or prior numbness/tingling). CONCLUSION Elevated baseline plasma TG is associated with an increased risk of CIPN development and warrants further validation in other cohorts. Ultimately, this may enable therapeutic intervention.
Collapse
Affiliation(s)
- Nicole Yeung
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Tiffany Li
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- The University of Sydney, Camperdown, NSW, Australia
| | - Hui-Ming Lin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- The University of Sydney, Camperdown, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | | | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Kate L Mahon
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- The University of Sydney, Camperdown, NSW, Australia
- Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Susanna B Park
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- The University of Sydney, Camperdown, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
- Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
7
|
Costamagna D, Bastianini V, Corvelyn M, Duelen R, Deschrevel J, De Beukelaer N, De Houwer H, Sampaolesi M, Gayan-Ramirez G, Campenhout AV, Desloovere K. Botulinum Toxin Treatment of Adult Muscle Stem Cells from Children with Cerebral Palsy and hiPSC-Derived Neuromuscular Junctions. Cells 2023; 12:2072. [PMID: 37626881 PMCID: PMC10453788 DOI: 10.3390/cells12162072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Botulinum neurotoxin type-A (BoNT) injections are commonly used as spasticity treatment in cerebral palsy (CP). Despite improved clinical outcomes, concerns regarding harmful effects on muscle morphology have been raised, and the BoNT effect on muscle stem cells remains not well defined. This study aims at clarifying the impact of BoNT on growing muscles (1) by analyzing the in vitro effect of BoNT on satellite cell (SC)-derived myoblasts and fibroblasts obtained from medial gastrocnemius microbiopsies collected in young BoNT-naïve children (t0) compared to age ranged typically developing children; (2) by following the effect of in vivo BoNT administration on these cells obtained from the same children with CP at 3 (t1) and 6 (t2) months post BoNT; (3) by determining the direct effect of a single and repeated in vitro BoNT treatment on neuromuscular junctions (NMJs) differentiated from hiPSCs. In vitro BoNT did not affect myogenic differentiation or collagen production. The fusion index significantly decreased in CP at t2 compared to t0. In NMJ cocultures, BoNT treatment caused axonal swelling and fragmentation. Repeated treatments impaired the autophagic-lysosomal system. Further studies are warranted to understand the long-term and collateral effects of BoNT in the muscles of children with CP.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (D.C.); (V.B.); (N.D.B.)
- Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (M.C.); (R.D.); (M.S.)
| | - Valeria Bastianini
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (D.C.); (V.B.); (N.D.B.)
| | - Marlies Corvelyn
- Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (M.C.); (R.D.); (M.S.)
| | - Robin Duelen
- Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (M.C.); (R.D.); (M.S.)
- Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Jorieke Deschrevel
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.D.); (G.G.-R.)
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (D.C.); (V.B.); (N.D.B.)
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Hannah De Houwer
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (H.D.H.); (A.V.C.)
| | - Maurilio Sampaolesi
- Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (M.C.); (R.D.); (M.S.)
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.D.); (G.G.-R.)
| | - Anja Van Campenhout
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (H.D.H.); (A.V.C.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (D.C.); (V.B.); (N.D.B.)
| |
Collapse
|
8
|
Linzer RW, Guida DL, Aminov J, Snider JM, Khalife G, Buyukbayraktar AB, Alhaddad C, Resnick AE, Wang P, Pan CH, Allopenna JJ, Clarke CJ. Dihydroceramide desaturase 1 (DES1) promotes anchorage-independent survival downstream of HER2-driven glucose uptake and metabolism. FASEB J 2022; 36:e22558. [PMID: 36165222 PMCID: PMC9597949 DOI: 10.1096/fj.202200748r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Oncogenic reprogramming of cellular metabolism is a hallmark of many cancers, but our mechanistic understanding of how such dysregulation is linked to tumor behavior remains poor. In this study, we have identified dihydroceramide desaturase (DES1)-which catalyzes the last step in de novo sphingolipid synthesis-as necessary for the acquisition of anchorage-independent survival (AIS), a key cancer enabling biology, and establish DES1 as a downstream effector of HER2-driven glucose uptake and metabolism. We further show that DES1 is sufficient to drive AIS and in vitro tumorigenicity and that increased DES1 levels-found in a third of HER2+ breast cancers-are associated with worse survival outcomes. Taken together, our findings reveal a novel pro-tumor role for DES1 as a transducer of HER2-driven glucose metabolic signals and provide evidence that targeting DES1 is an effective approach for overcoming AIS. Results further suggest that DES1 may have utility as a biomarker of aggressive and metastasis-prone HER2+ breast cancer.
Collapse
Affiliation(s)
- Ryan W Linzer
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Danielle L Guida
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Jonathan Aminov
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Justin M Snider
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Gabrielle Khalife
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - A Burak Buyukbayraktar
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Charbel Alhaddad
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Andrew E Resnick
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Pule Wang
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chun-Hao Pan
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Janet J Allopenna
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Benarroch EE. What Is the Role of Sphingosine-1-Phosphate Receptors in Pain? Neurology 2021; 96:525-528. [PMID: 33723022 DOI: 10.1212/wnl.0000000000011605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
|
10
|
Arsenault EJ, McGill CM, Barth BM. Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2. Neuromolecular Med 2021; 23:25-46. [PMID: 33547562 PMCID: PMC9020407 DOI: 10.1007/s12017-021-08646-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Neuro-inflammation accompanies numerous neurological disorders and conditions where it can be associated with a progressive neurodegenerative pathology. In a similar manner, alterations in sphingolipid metabolism often accompany or are causative features in degenerative neurological conditions. These include dementias, motor disorders, autoimmune conditions, inherited metabolic disorders, viral infection, traumatic brain and spinal cord injury, psychiatric conditions, and more. Sphingolipids are major regulators of cellular fate and function in addition to being important structural components of membranes. Their metabolism and signaling pathways can also be regulated by inflammatory mediators. Therefore, as certain sphingolipids exert distinct and opposing cellular roles, alterations in their metabolism can have major consequences. Recently, regulation of bioactive sphingolipids by neuro-inflammatory mediators has been shown to activate a neuronal NADPH oxidase 2 (NOX2) that can provoke damaging oxidation. Therefore, the sphingolipid-regulated neuronal NOX2 serves as a mechanistic link between neuro-inflammation and neurodegeneration. Moreover, therapeutics directed at sphingolipid metabolism or the sphingolipid-regulated NOX2 have the potential to alleviate neurodegeneration arising out of neuro-inflammation.
Collapse
Affiliation(s)
- Emma J Arsenault
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Colin M McGill
- Department of Chemistry, University of Alaska Anchorage, Anchorage, AK, 99508, USA
| | - Brian M Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
11
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
12
|
Tran D, Myers S, McGowan C, Henstridge D, Eri R, Sonda S, Caruso V. 1-Deoxysphingolipids, Early Predictors of Type 2 Diabetes, Compromise the Functionality of Skeletal Myoblasts. Front Endocrinol (Lausanne) 2021; 12:772925. [PMID: 35002962 PMCID: PMC8739520 DOI: 10.3389/fendo.2021.772925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
Metabolic dysfunction, dysregulated differentiation, and atrophy of skeletal muscle occur as part of a cluster of abnormalities associated with the development of Type 2 diabetes mellitus (T2DM). Recent interest has turned to the attention of the role of 1-deoxysphingolipids (1-DSL), atypical class of sphingolipids which are found significantly elevated in patients diagnosed with T2DM but also in the asymptomatic population who later develop T2DM. In vitro studies demonstrated that 1-DSL have cytotoxic properties and compromise the secretion of insulin from pancreatic beta cells. However, the role of 1-DSL on the functionality of skeletal muscle cells in the pathophysiology of T2DM still remains unclear. This study aimed to investigate whether 1-DSL are cytotoxic and disrupt the cellular processes of skeletal muscle precursors (myoblasts) and differentiated cells (myotubes) by performing a battery of in vitro assays including cell viability adenosine triphosphate assay, migration assay, myoblast fusion assay, glucose uptake assay, and immunocytochemistry. Our results demonstrated that 1-DSL significantly reduced the viability of myoblasts in a concentration and time-dependent manner, and induced apoptosis as well as cellular necrosis. Importantly, myoblasts were more sensitive to the cytotoxic effects induced by 1-DSL rather than by saturated fatty acids, such as palmitate, which are critical mediators of skeletal muscle dysfunction in T2DM. Additionally, 1-DSL significantly reduced the migration ability of myoblasts and the differentiation process of myoblasts into myotubes. 1-DSL also triggered autophagy in myoblasts and significantly reduced insulin-stimulated glucose uptake in myotubes. These findings demonstrate that 1-DSL directly compromise the functionality of skeletal muscle cells and suggest that increased levels of 1-DSL observed during the development of T2DM are likely to contribute to the pathophysiology of muscle dysfunction detected in this disease.
Collapse
Affiliation(s)
- Duyen Tran
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen Myers
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Courtney McGowan
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
- Sport Performance Optimization Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Darren Henstridge
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Rajaraman Eri
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Sabrina Sonda
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Institute for Research on Pain, Istituto di Formazione e Ricerca in Scienze Algologiche (ISAL) Foundation, Rimini, Italy
- *Correspondence: Vanni Caruso,
| |
Collapse
|
13
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
14
|
Hornemann T. Mini review: Lipids in Peripheral Nerve Disorders. Neurosci Lett 2020; 740:135455. [PMID: 33166639 DOI: 10.1016/j.neulet.2020.135455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Neurons are polarized cells whose fundamental functions are to receive, conduct and transmit signals. In bilateral animals, the nervous system is divided into the central (CNS) and peripheral (PNS) nervous system. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Sensory axons can be up to 3 feet in length. Because of its long-reaching and complex structure, the peripheral nervous system (PNS) is exposed and vulnerable to many genetic, metabolic and environmental predispositions. Lipids and lipid intermediates are essential components of nerves. About 50 % of the brain dry weight consist of lipids, which makes it the second highest lipid rich tissue after adipose tissue. However, the role of lipids in neurological disorders in particular of the peripheral nerves is not well understood. This review aims to provide an overview about the role of lipids in the disorders of the PNS.
Collapse
Affiliation(s)
- Th Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland.
| |
Collapse
|
15
|
Squillace S, Spiegel S, Salvemini D. Targeting the Sphingosine-1-Phosphate Axis for Developing Non-narcotic Pain Therapeutics. Trends Pharmacol Sci 2020; 41:851-867. [PMID: 33010954 DOI: 10.1016/j.tips.2020.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is a life-altering condition affecting millions of people. Current treatments are inadequate and prolonged therapies come with severe side effects, especially dependence and addiction to opiates. Identification of non-narcotic analgesics is of paramount importance. Preclinical and clinical studies suggest that sphingolipid metabolism alterations contribute to neuropathic pain development. Functional sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) antagonists, such as FTY720/fingolimod, used clinically for non-pain conditions, are emerging as non-narcotic analgesics, supporting the repurposing of fingolimod for chronic pain treatment and energizing drug discovery focused on S1P signaling. Here, we summarize the role of S1P in pain to highlight the potential of targeting the S1P axis towards development of non-narcotic therapeutics, which, in turn, will hopefully help lessen misuse of opioid pain medications and address the ongoing opioid epidemic.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|