1
|
Pizaña-Encarnación JM, Escoto-Rosales MJ, Islas-Espinoza AM, Morales-Galindo DK, Déciga-Campos M, Quintanar BG, Reyes R, Granados-Soto V, Fernández-Guasti A. Activational and organizational actions of gonadal hormones on the sexual dimorphism of the α 6-subunit containing GABA A receptor in Wistar rats with neuropathic pain. Horm Behav 2025; 171:105746. [PMID: 40250165 DOI: 10.1016/j.yhbeh.2025.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Sex differences in pain perception and response to analgesics are well documented, yet the underlying causes remain poorly understood. Here we investigate the sexual dimorphism in the function of α6GABAA receptors in neuropathic pain, focusing on activational and organizational actions of gonadal hormones. Using the nerve ligation model in rats, we found that the positive allosteric modulator, PZ-ll-029 (30 nmol, it), produced a robust antiallodynic effect in females but not in males. Ovariectomy abolished this effect, while a single dose of estradiol (20 μg/kg sc, -24 h), that returned to physiological serum levels, partially restored it, indicating that the activational effect of estradiol is crucial for α6GABAA receptor-mediated antiallodynia in females. Interestingly, adult or neonatal (at postnatal day 3) orchidectomy did not alter the male's insensitivity to PZ-ll-029, even after estradiol treatment. However, neonatal female's virilization (with testosterone propionate 120 μg/rat at postnatal day 3) induced a male-like insensitivity to PZ-ll-029, that was partial when the ovaries were present and complete after adult ovariectomy. These findings reveal that the neonatal organizational effects of testosterone determine the sex-specific insensitivity of α6GABAA receptors to modulate neuropathic pain, while the activational effects of estradiol can partly maintain the female-typical response, despite early androgen exposure. Our results provide new insights into hormonal regulation of pain modulation and suggest that both developmental exposure and adult status should be considered in basic research and preclinical studies investigating sex-based dimorphisms.
Collapse
Affiliation(s)
| | - María José Escoto-Rosales
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Diana Karen Morales-Galindo
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City, Mexico
| | | | - Rebeca Reyes
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| | | |
Collapse
|
2
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. Pain 2025; 166:614-630. [PMID: 39928726 PMCID: PMC11819886 DOI: 10.1097/j.pain.0000000000003508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 02/12/2025]
Abstract
ABSTRACT Cell states are influenced by the regulation of gene expression orchestrated by transcription factors capable of binding to accessible DNA regions. To uncover if sex differences exist in chromatin accessibility in the human dorsal root ganglion (hDRG), where nociceptive neurons innervating the body are found, we performed bulk and spatial assays for transposase-accessible chromatin technology followed by sequencing (ATAC-seq) from organ donors without a history of chronic pain. Using bulk ATAC-seq, we detected abundant sex differences in the hDRG. In women, differentially accessible regions (DARs) mapped mostly to the X chromosome, whereas in men, they mapped to autosomal genes. Hormone-responsive transcription factor binding motifs such as EGR1/3 were abundant within DARs in women, while JUN, FOS, and other activating protein 1 factor motifs were enriched in men, suggesting a higher activation state of cells compared with women. These observations were consistent with spatial ATAC-seq data. Furthermore, we validated that EGR1 expression is biased to female hDRG using RNAscope. In neurons, spatial ATAC-seq revealed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in women and in Ca2+-signaling-related genes in men. Strikingly, XIST, responsible for inactivating 1 X chromosome by compacting it and maintaining at the periphery of the nucleus, was found to be highly dispersed in female neuronal nuclei. This is likely related to the higher chromatin accessibility in X in female hDRG neurons observed using both ATAC-seq approaches. We have documented baseline epigenomic sex differences in the hDRG which provide important descriptive information to test future hypotheses.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadijah Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
3
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex differences in the affective-cognitive dimension of neuropathic pain: Insights from the spared nerve injury rat model. THE JOURNAL OF PAIN 2025; 27:104752. [PMID: 39626836 DOI: 10.1016/j.jpain.2024.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Over 40% of neuropathic pain patients experience mood and cognitive disturbances, often showing reduced response to analgesics, with most affected individuals being female. This highlights the critical role of biological sex in pain-related affective and cognitive disorders, making it essential to understand the emotional and cognitive circuits linked to pain for improving treatment strategies. However, research on sex differences in preclinical pain models is lacking. This study aimed to investigate these differences using the spared nerve injury (SNI) rat model, conducting a comprehensive series of behavioural tests over 100 days post-injury to identify key time points for observing sex-specific behaviours indicative of pain-related conditions. The findings revealed that female rats exhibited greater mechanical and cold hypersensitivity compared to males following nerve injury and showed earlier onset of depression-related behaviours, while males were more prone to anxiety, social, and memory-related alterations. Interestingly, by the 14th week post-injury, females displayed no signs of these emotional and cognitive impairments. Additionally, fluctuations in the oestrous cycle or changes in testosterone and oestradiol levels did not correlate with sex differences in pain sensitivity or negative affect. Recognizing the influence of biological sex on pain-induced affective and cognitive alterations, especially in later stages post-injury, is crucial for enhancing our understanding of this complex pain disorder. PERSPECTIVE: This manuscript reports the relevance of long-term investigations of sex differences in chronic pain. It shows differential development of somatosensory sensitivity, negative affective states and cognitive impairments in males and females. It emphasizes the importance of including subjects of both sexes in the investigation of pain-related mechanisms and therapeutic management.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland; Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Merlin E, Salio C, Ferrini F. Painful Diabetic Neuropathy: Sex-Specific Mechanisms and Differences from Animal Models to Clinical Outcomes. Cells 2024; 13:2024. [PMID: 39682771 PMCID: PMC11640556 DOI: 10.3390/cells13232024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetes is a chronic and progressive disease associated with high blood glucose levels. Several co-morbidities arise from diabetes, the most common and severe one is diabetic neuropathy whose symptoms also include pain hypersensitivity. Currently, there are no effective therapies to counteract painful diabetic neuropathy or slow down the progression of the disease, and the underlying mechanisms are yet to be fully understood. Emerging data in recent decades have provided compelling evidence that the molecular and cellular mechanisms underlying chronic pain are different across the sexes. Interestingly, relevant differences have also been observed in the course and clinical presentation of painful diabetic neuropathy in humans. Here, we reviewed the current state of the art on sex differences in diabetic neuropathy, from animal models to clinical data. Comparing the output of both preclinical and clinical studies is necessary for properly orienting future choices in pain research, refining animal models, and interpreting clinical data. The identification of sex-specific mechanisms may help to develop more targeted therapies to counteract pain symptoms in diabetes.
Collapse
Affiliation(s)
- Emma Merlin
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (E.M.); (C.S.)
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (E.M.); (C.S.)
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (E.M.); (C.S.)
- Department of Psychiatry and Neurosciences, Université Laval, Québec, QC G1K 7P4, Canada
| |
Collapse
|
5
|
Subedi A, Etemad A, Tiwari A, Huang Y, Chatterjee B, McLeod SM, Lu Y, Gonzalez D, Ghosh K, Sirito M, Singh SK, Ruiz E, Grimm SL, Coarfa C, Pan HL, Majumder S. Nerve injury inhibits Oprd1 and Cnr1 transcription through REST in primary sensory neurons. Sci Rep 2024; 14:26612. [PMID: 39496614 PMCID: PMC11535536 DOI: 10.1038/s41598-024-74487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
The transcription repressor REST in the dorsal root ganglion (DRG) is upregulated by peripheral nerve injury and promotes the development of chronic pain. However, the genes targeted by REST in neuropathic pain development remain unclear. The expression levels of four opioid receptor genes (Oprm1, Oprd1, Oprl1 and Oprk1) and the cannabinoid CB1 receptor (Cnr1) gene in the DRG regulate nociception. In this study, we determined the role of REST in controlling their expression in the DRG induced by spared nerve injury (SNI). SNI induced chronic pain hypersensitivity in wild-type mice and was accompanied by increased levels of Rest transcript and protein. Transcriptomic analyses of wild-type mouse DRGs suggested that SNI upregulates the expression of Rest transcripts and downregulates the transcripts of all four opioid receptor genes and the Cnr1 gene. Quantitative reverse transcription polymerase chain reaction analyses of these tissues validated these results. Analysis of publicly available bioinformatic data suggested that REST binds to the promoter regions of Oprm1 and Cnr1. Chromatin immunoprecipitation analyses indicated the presence of REST at these promoters. Full-length Rest conditional knockout in primary sensory neurons reduced SNI-induced pain hypersensitivity and rescued the SNI-induced reduction in the expression of Oprd1 and Cnr1 in mouse DRG. Our results suggest that nerve injury represses the transcription of at least the Oprd1 and Cnr1 genes via REST in primary sensory neurons and that REST is a potential therapeutic target for neuropathic pain. Thus, inhibiting REST activity could potentially reduce chronic neuropathic pain and augment opioid/cannabinoid analgesic actions by increasing the transcription of Oprd1 and Cnr1 genes in DRG neurons.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Ganglia, Spinal/metabolism
- Mice
- Sensory Receptor Cells/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Neuralgia/metabolism
- Neuralgia/genetics
- Peripheral Nerve Injuries/metabolism
- Peripheral Nerve Injuries/genetics
- Male
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Mice, Knockout
- Gene Expression Regulation
- Mice, Inbred C57BL
- Transcription, Genetic
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Ashok Subedi
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
- Baylor College of Medicine, 77030, Houston, TX, USA
| | - Asieh Etemad
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Aadhya Tiwari
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Yuying Huang
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Biji Chatterjee
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Samantha M McLeod
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Yungang Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - DiAngelo Gonzalez
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Krishna Ghosh
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Mario Sirito
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Elisa Ruiz
- Department of Molecular and Cell Biology, Baylor College of Medicine, 77030, Houston, TX, USA
| | - Sandra L Grimm
- Department of Molecular and Cell Biology, Baylor College of Medicine, 77030, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, 77030, Houston, TX, USA
| | - Hui-Lin Pan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA.
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA.
| |
Collapse
|
6
|
Balleste AF, Sangadi A, Titus DJ, Johnstone T, Hogenkamp D, Gee KW, Atkins CM. Enhancing cognitive recovery in chronic traumatic brain injury through simultaneous allosteric modulation of α7 nicotinic acetylcholine and α5 GABA A receptors. Exp Neurol 2024; 379:114879. [PMID: 38942266 PMCID: PMC11283977 DOI: 10.1016/j.expneurol.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.
Collapse
Affiliation(s)
- Alyssa F Balleste
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Akhila Sangadi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J Titus
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Derk Hogenkamp
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Kelvin W Gee
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Calvillo-Montoya DL, Martínez-Magaña CJ, Oviedo N, Murbartián J. The Estrogen Receptor Alpha Regulates the Sex-dependent Expression and Pronociceptive Role of Bestrophin-1 in Neuropathic Rats. THE JOURNAL OF PAIN 2024; 25:104513. [PMID: 38521145 DOI: 10.1016/j.jpain.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Bestrophin-1, a calcium-activated chloride channel (CaCC), is involved in neuropathic pain; however, it is unclear whether it has a dimorphic role in female and male neuropathic rats. This study investigated if 17β-estradiol and estrogen receptor alpha (ERα) activation regulate bestrophin-1 activity and expression in neuropathic rats. Neuropathic pain was induced by L5-spinal nerve transection (SNT). Intrathecal administration of CaCCinh-A01 (.1-1 µg), a CaCC blocker, reversed tactile allodynia induced by SNT in female but not male rats. In contrast, T16Ainh-A01, a selective anoctamin-1 blocker, had an equal antiallodynic effect in both sexes. SNT increased bestrophin-1 protein expression in injured L5 dorsal root ganglia (DRG) in female rats but decreased bestrophin-1 protein in L5 DRG in male rats. Ovariectomy prevented the antiallodynic effect of CaCCinh-A01, but 17β-estradiol replacement restored it. The effect of CaCCinh-A01 was prevented by intrathecal administration of MPP, a selective ERα antagonist, in rats with and without prior hormonal manipulation. In female rats with neuropathy, ovariectomy prevented the increase in bestrophin-1 and ERα protein expression, while 17β-estradiol replacement allowed for an increase in both proteins in L5 DRG. Furthermore, ERα antagonism (with MPP) prevented the increase in bestrophin-1 and ERα protein expression. Finally, ERα activation with PPT, an ERα selective activator, induced the antiallodynic effect of CaCCinh-A01 in neuropathic male rats and prevented the reduction in bestrophin-1 protein expression in L5 DRG. In summary, data suggest ERα activation is necessary for bestrophin-1's pronociceptive action to maintain neuropathic pain in female rats. PERSPECTIVE: The mechanisms involved in neuropathic pain differ between male and female animals. Our data suggest that ERα is necessary for expression and function of bestrophin-1 in neuropathic female but not male rats. Data support the idea that a therapeutic approach to relieving neuropathic pain must be based on patient's gender.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS, Mexico City, Mexico
| | - Janet Murbartián
- Department of Pharmacobiologý, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
8
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
9
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
10
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
11
|
Rodríguez-Palma EJ, Islas-Espinoza AM, Ramos-Rodríguez II, Pizaña-Encarnación JM, Gutiérrez-Agredano MÁ, Morales-Moreno C, Fernández-Guasti A, Granados-Soto V. Estradiol modulates the role of the spinal α 6-subunit containing GABA A receptors in female rats with neuropathic pain. Eur J Pharmacol 2024; 974:176616. [PMID: 38679122 DOI: 10.1016/j.ejphar.2024.176616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17β-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17β-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17β-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17β-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17β-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Itzel I Ramos-Rodríguez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Miguel Á Gutiérrez-Agredano
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
12
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
13
|
Rodríguez-Palma EJ, Ramos-Rodríguez II, Huerta de la Cruz S, Granados-Soto V, Sancho M. Spinal nerve ligation: An experimental model to study neuropathic pain in rats and mice. Methods Cell Biol 2024; 188:73-88. [PMID: 38880529 DOI: 10.1016/bs.mcb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Neuropathic pain, defined as the most terrible of all tortures, which a nerve wound may inflict, is a common chronic painful condition caused by gradual damage or dysfunction of the somatosensory nervous system. As with many chronic diseases, neuropathic pain has a profound economic and emotional impact worldwide and represents a major public health issue from a treatment standpoint. This condition involves multiple sensory symptoms including impaired transmission and perception of noxious stimuli, burning, shooting, spontaneous pain, mechanical or thermal allodynia and hyperalgesia. Current pharmacological options for the treatment of neuropathic pain are limited, ineffective and have unacceptable side effects. In this framework, a deeper understanding of the pathophysiology and molecular mechanisms associated with neuropathic pain is key to the development of promising new therapeutical approaches. For this purpose, a plethora of experimental models that mimic common clinical features of human neuropathic pain have been characterized in rodents, with the spinal nerve ligation (SNL) model being one of the most widely used. In this chapter, we provide a detailed surgical procedure of the SNL model used to induce neuropathic pain in rats and mice. We further describe the behavioral approaches used for stimulus-evoked and spontaneous pain assessment in rodents. Finally, we demonstrate that our SNL model induces multiple pain behaviors in rats and mice.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| | - Itzel I Ramos-Rodríguez
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Zhou Y, Zhang Y, Botchway BOA, Wang X, Liu X. Curcumin can improve spinal cord injury by inhibiting DNA methylation. Mol Cell Biochem 2024; 479:351-362. [PMID: 37076656 DOI: 10.1007/s11010-023-04731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease. Traumatic SCI often causes persistent neurological deficits below the injury level. Epigenetic changes occur after SCI. Studies have shown DNA methylation to be a key player in nerve regeneration and remodeling, and in regulating some pathophysiological characteristics of SCI. Curcumin is a natural polyphenol from turmeric. It has anti-inflammatory, antioxidant, and neuroprotective effects, and can mitigate the cell and tissue damage caused by SCI. This report analyzed the specific functions of DNA methylation in central nervous system diseases, especially traumatic brain injury and SCI. DNA methylation can regulate the level of gene expressions in the central nervous system. Therefore, pharmacological interventions regulating DNA methylation may be promising for SCI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Xichen Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
15
|
Qian X, Zhao X, Yu L, Yin Y, Zhang XD, Wang L, Li JX, Zhu Q, Luo JL. Current status of GABA receptor subtypes in analgesia. Biomed Pharmacother 2023; 168:115800. [PMID: 37935070 DOI: 10.1016/j.biopha.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gamma-aminobutyric acid (GABA), a non-protein-producing amino acid synthesized from the excitatory amino acid glutamate via the enzyme glutamic acid decarboxylase, is extensively found in microorganisms, plants and vertebrates, and is abundantly expressed in the spinal cord and brain. It is the major inhibitory neurotransmitter in the mammalian nervous system. GABA plays crucial roles in the regulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of insomnia and depression. As the major inhibitory neurotransmitter, GABA plays pivotal roles in the regulation of pain sensation, which is initiated by the activation of peripheral nociceptors and transmitted to the spinal cord and brain along nerves. GABA exerts these roles by directly acting on three types of receptors: ionotropic GABAA and GABAC receptors and G protein-coupled GABAB receptor. The chloride-permeable ion channel receptors GABAA and GABAC mediate fast neurotransmission, while the metabotropic GABAB receptor mediates slow effect. Different GABA receptors regulate pain sensation via different signaling pathways. Here we highlight recent updates on the involvement of specific GABA receptors and their subtypes in the process of pain sensation. Further understanding of different GABA receptors and signaling pathways in pain sensation will benefit the development of novel analgesics for pain management by targeting specific GABA receptor subtypes and signaling pathways.
Collapse
Affiliation(s)
- Xunjia Qian
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinyi Zhao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Lulu Yu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao-Dan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
16
|
Kababie-Ameo R, Gutiérrez-Salmeán G, Cuellar CA. Evidence of impaired H-reflex and H-reflex rate-dependent depression in diabetes, prediabetes and obesity: a mini-review. Front Endocrinol (Lausanne) 2023; 14:1206552. [PMID: 37476495 PMCID: PMC10354514 DOI: 10.3389/fendo.2023.1206552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetes Mellitus is a public health problem associated with complications such as neuropathy; however, it has been proposed that these may begin to develop during prediabetes and may also be present in persons with obesity. Diabetic peripheral neuropathy is the presence of signs and/or symptoms of peripheral nerve dysfunction in people living with diabetes, which increases the risk of developing complications and has a deleterious impact on quality of life. As part of the therapeutic protocol for diabetes, screening tests to identify peripheral neuropathy are suggested, however, there are no recommendations for people with prediabetes and obesity without symptoms such as pain, numbness, or paresthesias. Moreover, clinical screening tests that are usually used to recognize this alteration, such as tendon reflex, temperature sensation, and pressure and vibration perception, might be subjective as they depend on the evaluator's experience thus the incorrect application of these tests may not recognize the damage to small or large-nerve fibers. Recent evidence suggests that an objective study such as the impairment of the rate-dependent depression of the H-reflex could be used as a biomarker of spinal disinhibition and hence may provide more information on sensorimotor integration.
Collapse
Affiliation(s)
- Rebeca Kababie-Ameo
- Facultad de Ciencias de la Salud, Universidad Anáhuac Mexico, Huixquilucan, Estado de Mexico, Mexico
| | - Gabriela Gutiérrez-Salmeán
- Facultad de Ciencias de la Salud, Universidad Anáhuac Mexico, Huixquilucan, Estado de Mexico, Mexico
- Centro de Especialidades del Riñon (CER), Naucalpan de Juarez, Estado de Mexico, Mexico
| | - Carlos A. Cuellar
- Escuela de Ciencias del Deporte, Universidad Anahuac Mexico, Huixquilucan, Estado de Mexico, Mexico
| |
Collapse
|
17
|
Rodríguez-Palma EJ, De la Luz-Cuellar YE, Islas-Espinoza AM, Félix-Leyva AE, Shiers SI, García G, Torres-Lopez JE, Delgado-Lezama R, Murbartián J, Price TJ, Granados-Soto V. Activation of α 6 -containing GABA A receptors induces antinociception under physiological and pathological conditions. Pain 2023; 164:948-966. [PMID: 36001074 PMCID: PMC9950299 DOI: 10.1097/j.pain.0000000000002763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. Results show that α 6 -containing GABA A receptor blockade or transient α 6 -containing GABA A receptor knockdown induces evoked hypersensitivity and spontaneous pain in naive female rats. The α 6 subunit is expressed in IB4 + and CGRP + primary afferent neurons in the rat spinal dorsal horn and dorsal root ganglia but not astrocytes. Nerve injury reduces α 6 subunit protein expression in the central terminals of the primary afferent neurons and dorsal root ganglia, whereas intrathecal administration of positive allosteric modulators of the α 6 -containing GABA A receptor reduces tactile allodynia and spontaneous nociceptive behaviors in female, but not male, neuropathic rats and mice. Overexpression of the spinal α 6 subunit reduces tactile allodynia and restores α 6 subunit expression in neuropathic rats. Positive allosteric modulators of the α 6 -containing GABA A receptor induces a greater antiallodynic effect in female rats and mice compared with male rats and mice. Finally, α 6 subunit is expressed in humans. This receptor is found in CGRP + and P2X3 + primary afferent fibers but not astrocytes in the human spinal dorsal horn. Our results suggest that the spinal α 6 -containing GABA A receptor has a sex-specific antinociceptive role in neuropathic pain, suggesting that this receptor may represent an interesting target to develop a novel treatment for neuropathic pain.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Yarim E. De la Luz-Cuellar
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M. Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Adalberto E. Félix-Leyva
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Stephanie I. Shiers
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge E. Torres-Lopez
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
18
|
Li X, Liu D, Dai Z, You Y, Chen Y, Lei C, Lv Y, Wang Y. Intraperitoneal 5-Azacytidine Alleviates Nerve Injury-Induced Pain in Rats by Modulating DNA Methylation. Mol Neurobiol 2023; 60:2186-2199. [PMID: 36627549 DOI: 10.1007/s12035-022-03196-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - DeZhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - ZhiSen Dai
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - YiSheng You
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Chen
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - ChenXing Lei
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - YouYou Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Ying Wang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China. .,Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
19
|
De la Luz-Cuellar YE, Coffeen U, Mercado F, Granados-Soto V. Spinal dopaminergic D1-and D2-like receptors have a sex-dependent effect in an experimental model of fibromyalgia. Eur J Pharmacol 2023; 948:175696. [PMID: 37003519 DOI: 10.1016/j.ejphar.2023.175696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
There is evidence about the importance of sex in pain. The purpose of this study was to investigate the effect of sex in the antiallodynic activity of spinal dopamine D1-and D2-like receptors in a model of fibromyalgia-type pain in rats. Reserpine induced the same extent of tactile allodynia in female and male rats. Intrathecal injection of SCH- 23390 (3-30 nmol, D1-like receptor antagonist), pramipexole (0.15-15 nmol) or quinpirole (1-10 nmol D2-like receptor agonists) increased withdrawal threshold in reserpine-treated female rats. Those drugs induced a greater antiallodynic effect in female rats. Sex-difference was also observed in a nerve injury model. Ovariectomy abated the antiallodynic effect of SCH- 23390 (30 nmol) in reserpine-treated rats, while systemic reconstitution of 17β-estradiol levels or intrathecal injection estrogen receptor-α agonist protopanaxatriol in ovariectomized reserpine-treated females restored the antiallodynic effect of SCH- 23390. Intrathecal administration of ICI-182,780 (estrogen receptor-α/β antagonist) or methyl-piperidino-pyrazole hydrate (estrogen receptor-α antagonist) abated 17β-estradiol-restored antiallodynic effect of SCH- 23390 in rats. In contrast, ovariectomy slightly reduced the effect of pramipexole (15 nmol) or quinpirole (10 nmol) in reserpine-treated rats, whereas systemic reconstitution of 17β-estradiol levels did not modify the antiallodynic effect of both drugs. Combination 17β-estradiol/progesterone, but not 17β-estradiol nor progesterone alone, restored the antiallodynic effect of pramipexole and quinpirole in the rats. Mifepristone (progesterone receptor antagonist) abated 17β-estradiol + progesterone restoration of antiallodynic effect of pramipexole and quinpirole. These data suggest that the antiallodynic effect of dopamine D1-and D2-like receptors in fibromyalgia-type pain depends on spinal 17β-estradiol/estrogen receptor-α and progesterone receptors, respectively.
Collapse
|
20
|
Lopez JA, Yamamoto A, Vecchi JT, Hagen J, Lee K, Sonka M, Hansen MR, Lee A. Caldendrin represses neurite regeneration and growth in dorsal root ganglion neurons. Sci Rep 2023; 13:2608. [PMID: 36788334 PMCID: PMC9929226 DOI: 10.1038/s41598-023-29622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Caldendrin is a Ca2+ binding protein that interacts with multiple effectors, such as the Cav1 L-type Ca2+ channel, which play a prominent role in regulating the outgrowth of dendrites and axons (i.e., neurites) during development and in response to injury. Here, we investigated the role of caldendrin in Cav1-dependent pathways that impinge upon neurite growth in dorsal root ganglion neurons (DRGNs). By immunofluorescence, caldendrin was localized in medium- and large- diameter DRGNs. Compared to DRGNs cultured from WT mice, DRGNs of caldendrin knockout (KO) mice exhibited enhanced neurite regeneration and outgrowth. Strong depolarization, which normally represses neurite growth through activation of Cav1 channels, had no effect on neurite growth in DRGN cultures from female caldendrin KO mice. Remarkably, DRGNs from caldendrin KO males were no different from those of WT males in terms of depolarization-dependent neurite growth repression. We conclude that caldendrin opposes neurite regeneration and growth, and this involves coupling of Cav1 channels to growth-inhibitory pathways in DRGNs of females but not males.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Annamarie Yamamoto
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Joseph T Vecchi
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Jussara Hagen
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Kyungmoo Lee
- Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, 51 Newton Rd. Iowa City, Iowa, 52242, USA
| | - Milan Sonka
- Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, 51 Newton Rd. Iowa City, Iowa, 52242, USA
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
21
|
Zhu C, Zhong W, Gong C, Chen B, Guo J. Global research trends on epigenetics and neuropathic pain: A bibliometric analysis. Front Mol Neurosci 2023; 16:1145393. [PMID: 37152435 PMCID: PMC10155611 DOI: 10.3389/fnmol.2023.1145393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Neuropathic pain (NP) is a common disease that manifests with pathological changes in the somatosensory system. In recent years, the interactions of NP with the epigenetic mechanism have been increasingly elucidated. However, only a few studies have used bibliometric tools to systematically analyze knowledge in this field. The objective of this study is to visually analyze the trends, hotspots, and frontiers in epigenetics and NP research by using a bibliometric method. Methods Studies related to epigenetics and NP were searched from the Science Citation Index-Expanded of the Web of Science Core Collection database. Search time is from inception to November 30, 2022. No restrictions were placed on language. Only articles and reviews were included as document types. Data on institutions, countries, authors, journal distribution, and keywords were imported into CiteSpace software for visual analysis. Results A total of 867 publications met the inclusion criteria, which spanned the period from 2000 to 2022. Over the years, the number of publications and the frequency of citations exhibited a clear upward trend in general, reaching a peak in 2021. The major contributing countries in terms of the number of publications were China, the United States, and Japan. The top three institutions were Rutgers State University, Xuzhou Medical University, and Nanjing Medical University. Molecular Pain, Pain, and Journal of Neuroinflammation contributed significantly to the volume of issues. Among the top 10 authors in terms of the number of publications, Tao Yuan-Xiang contributed 30 entries, followed by Zhang Yi with 24 and Wu Shao-Gen with 20. On the basis of the burst and clusters of keywords, "DNA methylation," "Circular RNA," "acetylation," "long non-coding RNA," and "microglia" are global hotspots in the field. Conclusion The bibliometric analysis indicates that the number of publications related to epigenetics and NP is exhibiting a rapid increase. Keyword analysis shows that "DNA methylation," "Circular RNA," "acetylation," "long non-coding RNA" and "microglia" are the most interesting terms for researchers in the field. More rigorous clinical trials and additional studies that explore relevant mechanisms are required in the future.
Collapse
|
22
|
Wanasuntronwong A, Kaewsrisung S, Rotpenpian N, Arayapisit T, Pavasant P, Supronsinchai W. Efficacy and mechanism of the antinociceptive effects of cannabidiol on acute orofacial nociception induced by Complete Freund’s Adjuvant in male Mus musculus mice. Arch Oral Biol 2022; 144:105570. [DOI: 10.1016/j.archoralbio.2022.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
|
23
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
24
|
Xu Z, Xie W, Feng Y, Wang Y, Li X, Liu J, Xiong Y, He Y, Chen L, Liu G, Wu Q. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain. J Neuroinflammation 2022; 19:164. [PMID: 35729568 PMCID: PMC9215054 DOI: 10.1186/s12974-022-02524-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background The pathogenesis of neuropathic pain and the reasons for the prolonged unhealing remain unknown. Increasing evidence suggests that sex oestrogen differences play a role in pain sensitivity, but few studies have focused on the oestrogen receptor which may be an important molecular component contributing to peripheral pain transduction. We aimed to investigate the impact of oestrogen receptors on the nociceptive neuronal response in the dorsal root ganglion (DRG) and spinal dorsal horn using a spared nerve injury (SNI) rat model of chronic pain. Methods We intrathecally (i.t.) administered a class of oestrogen receptor antagonists and agonists intrathecal (i.t.) administrated to male rats with SNI or normal rats to identify the main receptor. Moreover, we assessed genes identified through genomic metabolic analysis to determine the key metabolism point and elucidate potential mechanisms mediating continuous neuronal sensitization and neuroinflammatory responses in neuropathic pain. The excitability of DRG neurons was detected using the patch-clamp technique. Primary culture was used to extract microglia and DRG neurons, and siRNA transfection was used to silence receptor protein expression. Immunofluorescence, Western blotting, RT-PCR and behavioural testing were used to assess the expression, cellular distribution, and actions of the main receptor and its related signalling molecules. Results Increasing the expression and function of G protein-coupled oestrogen receptor (GPER), but not oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ), in the DRG neuron and microglia, but not the dorsal spinal cord, contributed to SNI-induced neuronal sensitization. Inhibiting GPER expression in the DRG alleviated SNI-induced pain behaviours and neuroinflammation by simultaneously downregulating iNOS, IL-1β and IL-6 expression and restoring GABAα2 expression. Additionally, the positive interaction between GPER and β-alanine and subsequent β-alanine accumulation enhances pain sensation and promotes chronic pain development. Conclusion GPER activation in the DRG induces a positive association between β-alanine with iNOS, IL-1β and IL-6 expression and represses GABAα2 involved in post-SNI neuropathic pain development. Blocking GPER and eliminating β-alanine in the DRG neurons and microglia may prevent neuropathic pain development. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02524-9.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
26
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
27
|
Rodríguez-Palma EJ, Castelo-Flores DG, Caram-Salas NL, Salinas-Abarca AB, Centurión D, De la Luz-Cuellar YE, Granados-Soto V. Sex-dependent antiallodynic effect of α 2 adrenergic receptor agonist tizanidine in rats with experimental neuropathic pain. Eur J Pharmacol 2022; 920:174855. [PMID: 35227682 DOI: 10.1016/j.ejphar.2022.174855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to investigate the mechanism of antiallodynic effect of tizanidine in neuropathic rats. Spinal nerve ligation reduced withdrawal threshold which was interpreted as tactile allodynia. Increasing doses of tizanidine induced a dose-dependent antiallodynic effect in nerve injured rats. Tizanidine was more effective in female than male neuropathic rats. This drug induced a lower antiallodynic effect in ovariectomized, compared with non-ovariectomized, neuropathic rats, while systemic reconstitution of estradiol (E2) levels in ovariectomized neuropathic females fully restored the antiallodynic effect of tizanidine. Naloxone reduced the antiallodynic effect of tizanidine in male but not in female neuropathic rats. Ovariectomy restored the antagonizing effect of naloxone in the antiallodynic effect of tizanidine, whereas treatment with E2 abolished the effect of naloxone on tizanidine activity. Rauwolscine (α2 antagonist) and imiloxan (α2B antagonist) completely abated tizanidine-induced antiallodynic effect in female neuropathic rats. In contrast, BRL-44408 (α2A antagonist) partially decreased the effect of tizanidine while JP-1302 (α2C antagonist) was ineffective. Rauwolscine, imiloxan and BRL-44408 decreased withdrawal threshold in naïve female rats. Rauwolscine did not modify withdrawal threshold in naïve male rats. AGN192403 (I1 antagonist), BU224 (I2 antagonist), prazosin (α1 antagonist) and methiothepin (5-HT antagonist) did not modify tizanidine-induced antiallodynia in neuropathic females and males. These data indicate that tizanidine exhibits a sex-dependent antiallodynic effect in neuropathy. Data also suggest that activation of adrenergic α2B and α2A and opioid receptors participate in the antiallodynic effect of tizanidine in female and male, respectively, neuropathic rats.
Collapse
Affiliation(s)
- Erick Josué Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus. Mexico City, Mexico
| | - Dania Guadalupe Castelo-Flores
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus. Mexico City, Mexico; Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Nadia Lizeth Caram-Salas
- Cátedra CONACYT-CICESE, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Ana Belen Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus. Mexico City, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav, South Campus. Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus. Mexico City, Mexico.
| |
Collapse
|
28
|
Le AA, Lauterborn JC, Jia Y, Wang W, Cox CD, Gall CM, Lynch G. Prepubescent female rodents have enhanced hippocampal LTP and learning relative to males, reversing in adulthood as inhibition increases. Nat Neurosci 2022; 25:180-190. [PMID: 35087246 PMCID: PMC8876130 DOI: 10.1038/s41593-021-01001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023]
Abstract
Multiple studies indicate that adult male rodents perform better than females on spatial problems and have a lower threshold for long-term potentiation (LTP) of hippocampal CA3-to-CA1 synapses. We report here that, in rodents, prepubescent females rapidly encode spatial information and express low-threshold LTP, whereas age-matched males do not. The loss of low-threshold LTP across female puberty was associated with three inter-related changes: increased densities of α5 subunit-containing GABAARs at inhibitory synapses, greater shunting of burst responses used to induce LTP and a reduction of NMDAR-mediated synaptic responses. A negative allosteric modulator of α5-GABAARs increased burst responses to a greater degree in adult than in juvenile females and markedly enhanced both LTP and spatial memory in adults. The reasons for the gain of functions with male puberty do not involve these mechanisms. In all, puberty has opposite consequences for plasticity in the two sexes, albeit through different routes.
Collapse
Affiliation(s)
- Aliza A Le
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
30
|
Delgado‐Lezama R, Bravo‐Hernández M, Franco‐Enzástiga Ú, De la Luz‐Cuellar YE, Alvarado‐Cervantes NS, Raya‐Tafolla G, Martínez‐Zaldivar LA, Vargas‐Parada A, Rodríguez‐Palma EJ, Vidal‐Cantú GC, Guzmán‐Priego CG, Torres‐López JE, Murbartián J, Felix R, Granados‐Soto V. The role of spinal cord extrasynaptic α 5 GABA A receptors in chronic pain. Physiol Rep 2021; 9:e14984. [PMID: 34409771 PMCID: PMC8374381 DOI: 10.14814/phy2.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic pain is an incapacitating condition that affects a large population worldwide. Until now, there is no drug treatment to relieve it. The impairment of GABAergic inhibition mediated by GABAA receptors (GABAA R) is considered a relevant factor in mediating chronic pain. Even though both synaptic and extrasynaptic GABAA inhibition are present in neurons that process nociceptive information, the latter is not considered relevant as a target for the development of pain treatments. In particular, the extrasynaptic α5 GABAA Rs are expressed in laminae I-II of the spinal cord neurons, sensory neurons, and motoneurons. In this review, we discuss evidence showing that blockade of the extrasynaptic α5 GABAA Rs reduces mechanical allodynia in various models of chronic pain and restores the associated loss of rate-dependent depression of the Hoffmann reflex. Furthermore, in healthy animals, extrasynaptic α5 GABAA R blockade induces both allodynia and hyperalgesia. These results indicate that this receptor may have an antinociceptive and pronociceptive role in healthy and chronic pain-affected animals, respectively. We propose a hypothesis to explain the relevant role of the extrasynaptic α5 GABAA Rs in the processing of nociceptive information. The data discussed here strongly suggest that this receptor could be a valid pharmacological target to treat chronic pain states.
Collapse
Affiliation(s)
| | - Mariana Bravo‐Hernández
- Neuroregeneration LaboratoryDepartment of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | | | | | | | | | | | | | | | | | - Crystell G. Guzmán‐Priego
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
| | - Jorge E. Torres‐López
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
- Hospital Regional de Alta Especialidad “Dr. Juan Graham Casasús”, VillahermosaTabascoMexico
| | | | - Ricardo Felix
- Departamento de Biología CelularCinvestavMexico CityMexico
| | - Vinicio Granados‐Soto
- Neurobiology of Pain LaboratoryDepartamento de FarmacobiologíaCinvestavMexico CityMexico
| |
Collapse
|
31
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
32
|
Attenuation of Sensory Transmission Through the Rat Trigeminal Ganglion by GABA Receptor Activation. Neuroscience 2021; 471:80-92. [PMID: 34311018 DOI: 10.1016/j.neuroscience.2021.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/02/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022]
Abstract
While the trigeminal ganglion is often considered a passive conduit of sensory transmission, neurons and satellite glial cells (SGCs) within it can release neurotransmitters and express neuroreceptors. Some trigeminal ganglion neurons contain the neurotransmitter γ-aminobutyric acid (GABA) and express GABA receptors. There is behavioral evidence that increased GABA levels in the trigeminal ganglion decreases nociception, while a loss of GABA receptors results in hyperalgesia, although the neural mechanisms for this remain to be investigated. In this study, the expression of GABA receptors by trigeminal ganglion neurons that innervate rat labial skin and masseter muscle was compared using immunohistochemistry. The effect of intraganglionic administration of GABA receptor agonists was investigated by single unit recording of trigeminal brainstem and ganglion neuron responses to stimulation of the labial skin and/or masseter muscle in anesthetized rats. The mean frequency of expression of GABAA and GABAB receptors by masseter and labial skin ganglion neurons was 62.5% and 92.7%, and 55.4% and 20.3%, respectively. The expression of both GABA receptors was significantly greater in skin ganglion neurons. Masticatory muscle evoked brainstem trigeminal neuron responses were significantly attenuated by intraganglionic injection of muscimol (GABAA) but not baclofen (GABAB). The mechanical sensitivity of slow and fast conducting masticatory muscle afferent fibers was decreased and increased, respectively, by intraganglionic injection of both muscimol and baclofen. Activation of GABAA receptors may exert a gating effect on sensory transmission through the trigeminal ganglion by decreasing putative nociceptive input and enhancing innocuous sensory input.
Collapse
|