1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
White RB, Wild AR, O'Leary TP, Thompson AJ, Flibotte S, Peng A, Rogalski JC, Mair M, Derhami N, Bamji SX. The X-Linked Intellectual Disability Gene, ZDHHC9 , Is Important for Oligodendrocyte Subtype Determination and Myelination. Glia 2025; 73:1452-1466. [PMID: 40105030 PMCID: PMC12121472 DOI: 10.1002/glia.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Two percent of patients with X-linked intellectual disability (XLID) exhibit loss-of-function mutations in the enzyme, ZDHHC9. One of the main anatomical deficits observed in these patients is a decrease in corpus callosum volume and a concurrent disruption in white matter integrity. In this study, we demonstrate that deletion of Zdhhc9 in mice disrupts the balance of mature oligodendrocyte subtypes within the corpus callosum. While overall mature oligodendrocyte numbers are unchanged, there is a marked increase in MOL5/6 cells that are enriched in genes associated with cell adhesion and synapses, and a concomitant decrease in MOL2/3 cells that are enriched in genes associated with myelination. In line with this, we observed a decrease in the density of myelinated axons and disruptions in myelin compaction in the corpus callosum of Zdhhc9 knockout mice. RNA sequencing and proteomic analysis further revealed a reduction in genes and proteins essential for lipid metabolism, cholesterol synthesis, gene expression, and myelin compaction, offering insights into the underlying mechanisms of the pathology. These findings reveal a previously underappreciated and fundamental role for ZDHHC9 and protein palmitoylation in regulating oligodendrocyte subtype determination and myelinogenesis, offering mechanistic insights into the deficits observed in white matter volume in patients with mutations in ZDHHC9.
Collapse
Affiliation(s)
- Rocio B. White
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Angela R. Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Timothy P. O'Leary
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew J. Thompson
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics FacilityUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Angie Peng
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jason C. Rogalski
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mila Mair
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Neeki Derhami
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shernaz X. Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Zeng J, Zhou H, Wan H, Yang J. Single-cell omics: moving towards a new era in ischemic stroke research. Eur J Pharmacol 2025; 1000:177725. [PMID: 40350018 DOI: 10.1016/j.ejphar.2025.177725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Ischemic stroke (IS) is a highly complex and heterogeneous disease involving multiple pathophysiological events. A better understanding of the pathophysiology of IS will enhance preventive, diagnostic and therapeutic strategies. Despite significant advances in modern medicine, the molecular mechanisms of IS are still largely unknown. The high-throughput omics approach opens new avenues for identifying IS biomarkers and elucidating disease pathogenesis mechanisms. Single-cell omics enables a more thorough and in-depth analysis of the cellular interactions and properties in IS. This will lead to a better understanding of the onset, treatment and prognosis of IS. In this paper, we first reviewed the disease signatures and mechanisms research of IS. Subsequently, the use of single-cell omics to comprehend the mechanisms of IS was discussed, along with some recent developments in the field. To further delineate the upstream pathogenic alterations and downstream molecular impacts of IS, we also discussed the current use of machine learning approaches to single-cell omics data analysis. Particularly, single-cell omics is being used to inform risk assessment, early patient diagnosis and treatment strategies, and their potential impact on precision medicine. Thus, we summarized the role of single-cell omics in precision medicine. Despite the relative youth of the field, the development of single-cell omics promises to provide a powerful tool for elucidating the pathogenesis of IS.
Collapse
Affiliation(s)
- Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Ecological and Environmental, Hubei Industrial Polytechnic, Shiyan, 442000, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Yang Y, Suo N, Cui SH, Wu X, Ren XY, Liu Y, Guo R, Xie X. Trametinib, an anti-tumor drug, promotes oligodendrocytes generation and myelin formation. Acta Pharmacol Sin 2024; 45:2527-2539. [PMID: 38871922 PMCID: PMC11579360 DOI: 10.1038/s41401-024-01313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shi-Hao Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin-Yue Ren
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
5
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Lan XY, Kalkowski L, Chu CY, Jablonska A, Li S, Kai M, Gao Y, Janowski M, Walczak P. Unlocking the potential of ultra-high dose fractionated radiation for effective treatment of glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-3500563. [PMID: 37961626 PMCID: PMC10635404 DOI: 10.21203/rs.3.rs-3500563/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Conventional radiation therapy for glioblastoma (GBM) has limited efficacy. Regenerative medicine brings hope for repairing damaged tissue, opening opportunities for elevating the maximum acceptable radiation dose. In this study, we explored the effect of ultra-high dose fractionated radiation on brain injury and tumor responses in immunocompetent mice. We also evaluated the role of the HIF-1α under radiation. Methods Naïve and hypoxia-inducible factor-1 alpha (HIF-1α)+/- heterozygous mice received a fractionated daily dose of 20 Gy for three or five consecutive days. Magnetic resonance imaging (MRI) and histology were performed to assess brain injury post-radiation. The 2×105 human GBM1 luciferase-expressing cells were transplanted with tolerance induction protocol. Fractionated radiotherapy was performed during the exponential phase of tumor growth. BLI, MRI, and immunohistochemistry staining were performed to evaluate tumor growth dynamics and radiotherapy responses. Additionally, animal lifespan was recorded. Results Fractionated radiation of 5×20 Gy induced severe brain damage, starting 3 weeks after radiation. All animals from this group died within 12 weeks. In contrast, later onset and less severe brain injury were observed starting 12 weeks after radiation of 3×20 Gy. It resulted in complete GBM eradication and survival of all treated animals. Furthermore, HIF-1α+/- mice exhibited more obvious vascular damage 63 weeks after fractionated radiation of 3×20 Gy. Conclusion Ultra-high dose fractionated 3×20 Gy radiation can eradicate the GBM cells at the cost of only mild brain injury. The HIF-1α gene is a promising target for ameliorating vascular impairment post-radiation, encouraging the implementation of neurorestorative strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue Gao
- University of Maryland Baltimore
| | | | | |
Collapse
|
7
|
López-Muguruza E, Matute C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int J Mol Sci 2023; 24:12912. [PMID: 37629092 PMCID: PMC10454078 DOI: 10.3390/ijms241612912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system (CNS), characterized by demyelination and neurodegeneration. Oligodendrocytes play a vital role in maintaining the integrity of myelin, the protective sheath around nerve fibres essential for efficient signal transmission. However, in MS, oligodendrocytes become dysfunctional, leading to myelin damage and axonal degeneration. Emerging evidence suggests that metabolic changes, including mitochondrial dysfunction and alterations in glucose and lipid metabolism, contribute significantly to the pathogenesis of MS. Mitochondrial dysfunction is observed in both immune cells and oligodendrocytes within the CNS of MS patients. Impaired mitochondrial function leads to energy deficits, affecting crucial processes such as impulse transmission and axonal transport, ultimately contributing to neurodegeneration. Moreover, mitochondrial dysfunction is linked to the generation of reactive oxygen species (ROS), exacerbating myelin damage and inflammation. Altered glucose metabolism affects the energy supply required for oligodendrocyte function and myelin synthesis. Dysregulated lipid metabolism results in changes to the composition of myelin, affecting its stability and integrity. Importantly, low levels of polyunsaturated fatty acids in MS are associated with upregulated lipid metabolism and enhanced glucose catabolism. Understanding the intricate relationship between these mechanisms is crucial for developing targeted therapies to preserve myelin and promote neurological recovery in individuals with MS. Addressing these metabolic aspects may offer new insights into potential therapeutic strategies to halt disease progression and improve the quality of life for MS patients.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|