1
|
Maity D, Rahi V, Dorai ST, Chandrashekharappa S, Kaundal RK. Urolithin-A Derivative UAS03 Improves Cognitive Deficits and Memory by Activating Nrf2 Pathways to Alleviate Oxidative Stress and Neuroinflammation. ACS Chem Neurosci 2025. [PMID: 40227891 DOI: 10.1021/acschemneuro.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Neuroinflammation is a key factor in age-related cognitive decline and memory impairment. UAS03, a potent synthetic analogue of Urolithin-A, has demonstrated anti-inflammatory and antioxidant properties. This investigation examined the neuroprotective effect of UAS03 on lipopolysaccharide (LPS) induced neuroinflammation, and its associated cognitive impairments, memory deficits, and depression-like behaviors. Intracerebroventricular administration of LPS (12 μg/kg) was performed to induce neuroinflammation in mice, followed by a 7 day treatment with UAS03 at 10 and 30 mg/kg doses. Mice were evaluated for depressive and anxiety-like behavior, spatial memory, and learning functions using a series of neurobehavioral test paradigms. Histopathological and molecular analyses were conducted using hematoxylin-eosin and cresyl violet staining, immunohistochemistry, ELISA, and Western blotting techniques. We have found that, UAS03 significantly enhanced cognitive and memory functions impaired by LPS while concurrently reducing depressive symptoms. Furthermore, the compound attenuated neuronal damage and decreased the expression of IBA-1 and GFAP in hippocampal region. Through the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, UAS03 effectively mitigated markers of oxidative stress and reduced levels of pro-inflammatory factors, including IL-1β, TNF-α, and COX-2. Cumulatively, this study provides compelling evidence that UAS03 exerts neuroprotective effects by regulating essential pathways involved in anti-inflammatory and neuroprotective mechanisms, suggesting its potential as a preventative measure against age-related cognitive decline and memory impairments associated with neuroinflammation.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Vikrant Rahi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Sandya Tambi Dorai
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Wang X, Wang Y, Yang L, Zhang Y, Yang L. TREM2 + macrophages: a key role in disease development. Front Immunol 2025; 16:1550893. [PMID: 40242752 PMCID: PMC12000036 DOI: 10.3389/fimmu.2025.1550893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Triggering receptors expressed on myeloid cells 2 (TREM2), an immune receptor expressed on myeloid cells, has garnered considerable attention in recent years due to its role in unique signaling pathways and diverse biological functions, including phagocytosis, lipid metabolism, cell survival, and inflammatory responses. Although TREM2 is expressed in various cell types, such as macrophages, dendritic cells (DCs), osteoclasts, and others, where it exhibits context-dependent functional characteristics, it is mainly expressed in macrophages. Notably, TREM2 is implicated in the development and progression of multiple diseases, playing dual and often opposing roles in noncancerous diseases and cancers. This review aims to highlight the pivotal role of TREM2 in macrophages and immune-related diseases, elucidate its underlying mechanisms of action, explore its potential as a clinical diagnostic and prognostic marker, and propose therapeutic strategies targeting TREM2 based on current clinical trial data, providing comprehensive guidance and references for clinical practice.
Collapse
Affiliation(s)
- Xinxin Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunhan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| |
Collapse
|
3
|
Tang C, Zhou QQ, Huang XF, Ju YY, Rao BL, Liu ZC, Jia YA, Bai ZP, Lin QY, Liu L, Qu J, Zhang J, Gao ML. Integration and functionality of human iPSC-derived microglia in a chimeric mouse retinal model. J Neuroinflammation 2025; 22:53. [PMID: 40016767 PMCID: PMC11869422 DOI: 10.1186/s12974-025-03393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Microglia, the resident immune cells of the central nervous system, play a pivotal role in maintaining homeostasis, responding to injury, and modulating neuroinflammation. However, the limitations of rodent models in accurately representing human microglia have posed significant challenges in the study of retinal diseases. METHODS PLX5622 was used to eliminate endogenous microglia in mice through oral and intraperitoneal administration, followed by transplantation of human induced pluripotent stem cell-derived microglia (hiPSC-microglia, iMG) into retinal explants to create a novel ex vivo chimeric model containing xenotransplanted microglia (xMG). The number and proportion of xMG in the retina were quantified using retinal flat-mounting and immunostaining. To evaluate the proliferative capacity and synaptic pruning ability of xMG, the expression of Ki-67 and the phagocytosis of synaptic proteins SV2 and PSD95 was assessed. The chimeric model was stimulated with LPS, and single-cell RNA sequencing (scRNA-seq) was used to analyze transcriptomic changes in iMG and xMG. Mouse IL-34 antibody neutralization experiments were performed, and the behavior of xMG in retinal degenerative Pde6b-/- mice was examined. RESULTS We demonstrated that xenotransplanted microglia (xMG) successfully migrated to and localized within the mouse retina, adopting homeostatic morphologies. Our approach achieved over 86% integration of human microglia, which maintained key functions including proliferation, immune responsiveness, and synaptic pruning over a 14-day culture period. scRNA-seq of xMG revealed a shift in microglial signatures compared to monoculture iMG, indicating a transition to a more in vivo-like phenotype. In retinal degenerative Pde6b-/- mice, xMG exhibited activation and migrated toward degenerated photoreceptors. CONCLUSION This model provides a powerful platform for studying human microglia in the retinal context, offering significant insights for advancing research into retinal degenerative diseases and developing potential therapeutic strategies. Future applications of this model include using patient-derived iPSCs to investigate disease-specific microglial behaviors, thereby enhancing our understanding of microglia-related pathogenesis.
Collapse
Affiliation(s)
- Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qi-Qi Zhou
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya-Yi Ju
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bi-Lin Rao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-An Jia
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing-Yang Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lin Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Qu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
- Lead Contact, Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
4
|
Roveta F, Bonino L, Piella EM, Rainero I, Rubino E. Neuroinflammatory Biomarkers in Alzheimer's Disease: From Pathophysiology to Clinical Implications. Int J Mol Sci 2024; 25:11941. [PMID: 39596011 PMCID: PMC11593837 DOI: 10.3390/ijms252211941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The identification of neuroinflammation as a critical factor in Alzheimer's disease (AD) has expanded the focus of research beyond amyloid-β and tau pathology. The neuroinflammatory fluid biomarkers GFAP, sTREM2, and YKL-40 have gained attention for their potential in early detection and monitoring of disease progression. Plasma GFAP has demonstrated promise in predicting the conversion from mild cognitive impairment to AD dementia, while sTREM2 highlights microglial activation, although there are conflicting results regarding its dynamics in AD pathogenesis. Advanced imaging techniques, such as PET tracers targeting TSPO and MAO-B, have also been developed to visualize glial activation in vivo, offering spatial and temporal insights into neuroinflammatory processes. However, the clinical implementation of these biomarkers faces challenges due to their lack of specificity, as many of them can be elevated in other conditions. Therapeutic strategies targeting neuroinflammation are emerging, with TREM2-targeting therapies and antidiabetic drugs like GLP-1 receptor agonists showing potential in modulating microglial activity. Nevertheless, the complexity of neuroinflammation, which encompasses both protective and harmful responses, necessitates further research to fully unravel its role and optimize therapeutic approaches for AD.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Rubino
- Aging Brain and Memory Clinic, Department of Neuroscience “Rita Levi-Montalcini”, University of Torino, 10126 Torino, Italy; (F.R.); (L.B.); (E.M.P.); (I.R.)
| |
Collapse
|
5
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Zhang H, Huang D, Chen E, Cao D, Xu T, Dizdar B, Li G, Chen Y, Payne P, Province M, Li F. mosGraphGPT: a foundation model for multi-omic signaling graphs using generative AI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606222. [PMID: 39149314 PMCID: PMC11326168 DOI: 10.1101/2024.08.01.606222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Generative pretrained models represent a significant advancement in natural language processing and computer vision, which can generate coherent and contextually relevant content based on the pre-training on large general datasets and fine-tune for specific tasks. Building foundation models using large scale omic data is promising to decode and understand the complex signaling language patterns within cells. Different from existing foundation models of omic data, we build a foundation model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic data was integrated and interpreted using a multi-level signaling graph. The model was pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and fine-turned for multi-omic data of Alzheimer's Disease (AD). The experimental evaluation results showed that the model can not only improve the disease classification accuracy, but also is interpretable by uncovering disease targets and signaling interactions. And the model code are uploaded via GitHub with link: https://github.com/mosGraph/mosGraphGPT.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Di Huang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Ben Dizdar
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | | | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Tang Y, Wang Y, Gao Z, Li J, Zhang L, Shi H, Dong J, Song S, Qian C. sAPPα Peptide Promotes Damaged Microglia to Clear Alzheimer's Amyloid-β via Restoring Mitochondrial Function. Chemistry 2024; 30:e202400870. [PMID: 38736169 DOI: 10.1002/chem.202400870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with amyloid-β (Aβ) deposition as the main pathological feature. It's an important challenge to find new ways to clear Aβ from the brain. The soluble amyloid precursor protein α (sAPPα) is a neuroprotective protein and can attenuate neuronal damage, including toxic Aβ. However, the regulatory role of sAPPα in non-neuronal cells, such as microglia, is less reported and controversial. Here, we showed that sAPPα promoted the phagocytosis and degradation of Aβ in both normal and damaged microglia. Moreover, the function of damaged microglia was improved by the sAPPα through normalizing mitochondrial function. Furthermore, the results of molecular docking simulation showed that sAPPα had a good affinity with Aβ. We preliminarily reveal that sAPPα is similar to antibodies and can participate in the regulation of microglia phagocytosis and degradation of Aβ after binding to Aβ. sAPPα is expected to be a mild and safe peptide drug or drug carrier for AD.
Collapse
Affiliation(s)
- Yingqi Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Yangang Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Ziran Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Jiayi Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Lijia Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Haoting Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Jingwen Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Shipeng Song
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| |
Collapse
|
8
|
Song C, Li S, Mai Y, Li L, Dai G, Zhou Y, Liang X, Zou OM, Wang Y, Zhou L, Liu J, Zou Y. Dysregulated expression of miR-140 and miR-122 compromised microglial chemotaxis and led to reduced restriction of AD pathology. J Neuroinflammation 2024; 21:167. [PMID: 38956605 PMCID: PMC11218311 DOI: 10.1186/s12974-024-03162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Deposition of amyloid β, which is produced by amyloidogenic cleavage of APP by β- and γ-secretase, is one of the primary hallmarks of AD pathology. APP can also be processed by α- and γ-secretase sequentially, to generate sAPPα, which has been shown to be neuroprotective by promoting neurite outgrowth and neuronal survival, etc. METHODS: The global expression profiles of miRNA in blood plasma samples taken from 11 AD patients as well as from 14 age and sex matched cognitively normal volunteers were analyzed using miRNA-seq. Then, overexpressed miR-140 and miR-122 both in vivo and in vitro, and knock-down of the endogenous expression of miR-140 and miR-122 in vitro. Used a combination of techniques, including molecular biology, immunohistochemistry, to detect the impact of miRNAs on AD pathology. RESULTS In this study, we identified that two miRNAs, miR-140-3p and miR-122-5p, both targeting ADAM10, the main α-secretase in CNS, were upregulated in the blood plasma of AD patients. Overexpression of these two miRNAs in mouse brains induced cognitive decline in wild type C57BL/6J mice as well as exacerbated dyscognition in APP/PS1 mice. Although significant changes in APP and total Aβ were not detected, significantly downregulated ADAM10 and its non-amyloidogenic product, sAPPα, were observed in the mouse brains overexpressing miR-140/miR-122. Immunohistology analysis revealed increased neurite dystrophy that correlated with the reduced microglial chemotaxis in the hippocampi of these mice, independent of the other two ADAM10 substrates (neuronal CX3CL1 and microglial TREM2) that were involved in regulating the microglial immunoactivity. Further in vitro analysis demonstrated that both the reduced neuritic outgrowth of mouse embryonic neuronal cells overexpressing miR-140/miR-122 and the reduced Aβ phagocytosis in microglia cells co-cultured with HT22 cells overexpressing miR-140/miR-122 could be rescued by overexpressing the specific inhibitory sequence of miR-140/miR-122 TuD as well as by addition of sAPPα, rendering these miRNAs as potential therapeutic targets. CONCLUSIONS Our results suggested that neuroprotective sAPPα was a key player in the neuropathological progression induced by dysregulated expression of miR-140 and miR-122. Targeting these miRNAs might serve as a promising therapeutic strategy in AD treatment.
Collapse
Affiliation(s)
- Chao Song
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shufang Li
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yingren Mai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Linpeng Li
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guoku Dai
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yuan Zhou
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaosheng Liang
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Olivia Meilan Zou
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ya Wang
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Jun Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
9
|
Arfaei R, Mikaeili N, Daj F, Boroumand A, Kheyri A, Yaraghi P, Shirzad Z, Keshavarz M, Hassanshahi G, Jafarzadeh A, Shahrokhi VM, Khorramdelazad H. Decoding the role of the CCL2/CCR2 axis in Alzheimer's disease and innovating therapeutic approaches: Keeping All options open. Int Immunopharmacol 2024; 135:112328. [PMID: 38796962 DOI: 10.1016/j.intimp.2024.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, distresses the elderly in large numbers and is characterized by β-amyloid (Aβ) accumulation, elevated tau protein levels, and chronic inflammation. The brain's immune system is aided by microglia and astrocytes, which produce chemokines and cytokines. Nevertheless, dysregulated expression can cause hyperinflammation and lead to neurodegeneration. CCL2/CCR2 chemokines are implicated in neurodegenerative diseases exacerbating. Inflicting damage on nerves and central nervous system (CNS) cells is the function of this axis, which recruits and migrates immune cells, including monocytes and macrophages. It has been shown that targeting the CCL2/CCR2 axis may be a therapeutic option for inflammatory diseases. Using the current knowledge about the involvement of the CCL2/CCR2 axis in the immunopathogenesis of AD, this comprehensive review synthesizes existing information. It also explores potential therapeutic options, including modulation of the CCL2/CCR2 axis as a possible strategy in AD.
Collapse
Affiliation(s)
- Reyhaneh Arfaei
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Daj
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Shirzad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Keshavarz
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mohammadi Shahrokhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
10
|
Ceprián N, Martínez de Toda I, Maté I, Garrido A, Gimenez-Llort L, De la Fuente M. Prodromic Inflammatory-Oxidative Stress in Peritoneal Leukocytes of Triple-Transgenic Mice for Alzheimer's Disease. Int J Mol Sci 2024; 25:6976. [PMID: 39000092 PMCID: PMC11241217 DOI: 10.3390/ijms25136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1β, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.
Collapse
Affiliation(s)
- Noemí Ceprián
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martínez de Toda
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Ianire Maté
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Antonio Garrido
- Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lydia Gimenez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Mónica De la Fuente
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
11
|
Sharma M, Pal P, Gupta SK. The neurotransmitter puzzle of Alzheimer's: Dissecting mechanisms and exploring therapeutic horizons. Brain Res 2024; 1829:148797. [PMID: 38342422 DOI: 10.1016/j.brainres.2024.148797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's Disease (AD) represents a complex interplay of neurological pathways and molecular mechanisms, with significant impacts on patients' lives. This review synthesizes the latest developments in AD research, focusing on both the scientific advancements and their clinical implications. We examine the role of microglia in AD, highlighting their contribution to the disease's inflammatory aspects. The cholinergic hypothesis, a cornerstone of AD research, is re-evaluated, including the role of Alpha-7 Nicotinic Acetylcholine Receptors in disease progression. This review places particular emphasis on the neurotransmission systems, exploring the therapeutic potential of GABAergic neurotransmitters and the role of NMDA inhibitors in the context of glutamatergic neurotransmission. By analyzing the interactions and implications of neurotransmitter pathways in AD, we aim to shed light on emerging therapeutic strategies. In addition to molecular insights, the review addresses the clinical and personal aspects of AD, underscoring the need for patient-centered approaches in treatment and care. The final section looks at the future directions of AD research and treatment, discussing the integration of scientific innovation with patient care. This review aims to provide a comprehensive update on AD, merging scientific insights with practical considerations, suitable for both specialists and those new to the field.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Anatomy and Neurobiology, School of Medicine, University of California, USA.
| |
Collapse
|
12
|
Wei HR, Tang L, Yang XL, Chen CM, Li LX, Mao Y, Wang D, Kang F, Qun S, Zhang Z, Cao P, Jin Y. A microglial activation cascade across cortical regions underlies secondary mechanical hypersensitivity to amputation. Cell Rep 2024; 43:113804. [PMID: 38368612 DOI: 10.1016/j.celrep.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Neural mechanisms underlying amputation-related secondary pain are unclear. Using in vivo two-photon imaging, three-dimensional reconstruction, and fiber photometry recording, we show that a microglial activation cascade from the primary somatosensory cortex of forelimb (S1FL) to the primary somatosensory cortex of hindlimb (S1HL) mediates the disinhibition and subsequent hyperexcitation of glutamatergic neurons in the S1HL (S1HLGlu), which then drives secondary mechanical hypersensitivity development in ipsilateral hindpaws of mice with forepaw amputation. Forepaw amputation induces rapid S1FL microglial activation that further activates S1HL microglia via the CCL2-CCR2 signaling pathway. Increased engulfment of GABAergic presynapses by activated microglia stimulates S1HLGlu neuronal activity, ultimately leading to secondary mechanical hypersensitivity of hindpaws. It is widely believed direct neuronal projection drives interactions between distinct brain regions to prime specific behaviors. Our study reveals microglial interactions spanning different subregions of the somatosensory cortex to drive a maladaptive neuronal response underlying secondary mechanical hypersensitivity at non-injured sites.
Collapse
Affiliation(s)
- Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lan Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xin-Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, China
| | - Chang-Mao Chen
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Le-Xian Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Di Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Peng Cao
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Fu WY, Fu AKY, Ip NY. Neuronal γ-secretase regulates synaptic functions via cholesterol homeostasis. Neuron 2023; 111:3133-3135. [PMID: 37857086 DOI: 10.1016/j.neuron.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
In this issue of Neuron, Essayan-Perez and Südhof1 demonstrate roles for γ-secretase in the regulation of synaptic functions in human neurons. Chronic attenuation of γ-secretase activity increases synapse formation but decreases neurotransmission (i.e., the probability of presynaptic release), likely due to impairment of cholesterol metabolism.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518057, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518057, Guangdong, China.
| |
Collapse
|