1
|
Panzica G, Melcangi RC. Neuroactive steroids and the new decade. J Neuroendocrinol 2020; 32:e12832. [PMID: 31943411 DOI: 10.1111/jne.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Giancarlo Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), Università degli Studi di Torino, Orbassano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Mohammadi H, Rezaei M, Faghihi F, Khazaie H. Hypothalamic-Pituitary-Gonadal Activity in Paradoxical and Psychophysiological Insomnia. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:59-67. [PMID: 30967991 PMCID: PMC6419559 DOI: 10.4103/jmss.jmss_31_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Although insomnia is a sex-dimorphic disorder, there is limited knowledge about the association between sex hormones and insomnia. In the present study, the level of hypothalamus–pituitary–gonadal (HPG) axis activity was investigated in patients with insomnia by measuring serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), 17α-Hydroxyprogesterone, testosterone, progesterone, estradiol, dehydroepiandrosterone sulfate, and sex hormone-binding globulin. Methods: Numbers of 19 patients; including 13 females (68.40%) with paradox insomnia (32–53 years; 43.20 ± 6.40) and 17 patients; including 8 females (47.05%) with psychophysiological insomnia (14–62 years; 38.40 ± 16.30) were recruited. Seventeen aged-matched normal sleeper consisted of 13 males (26–59 years; 40.70 ± 10) consisted of 13 males (76.50%) were also recruited as control group. Insomnia was diagnosed by a sleep clinician according to the International Classification of Sleep Disorders-Second Edition criteria and an overnight polysomnography (PSG). A volume of 5 ml of venous blood samples were collected, prepared, and stored at 8 AM under standard condition. Serum levels of hormones were measured using enzyme-linked immunosorbent assay kits. Data were analyzed by Chi-square and ANCOVA. The associations between PSG and biochemical parameters were evaluated using multiple linear regression analysis. Results: There were no significant differences in all biochemical analyses between two insomnia subgroups (paradoxical and psychophysiological insomnia) and normal sleepers. Testosterone was positively related to maximum pulse transit time (PTT). Moreover, both LH and FSH were positively related to wake index and diastolic blood pressure. Conclusion: Although there were no significant differences in all HPG's hormones between groups, both LH and FSH were associated with wake index and diastolic blood pressure. Moreover, testosterone was positively related to PTT.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rezaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Traish AM. The Post-finasteride Syndrome: Clinical Manifestation of Drug-Induced Epigenetics Due to Endocrine Disruption. CURRENT SEXUAL HEALTH REPORTS 2018. [DOI: 10.1007/s11930-018-0161-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Affiliation(s)
- G C Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), Università degli Studi di Torino, Orbassano, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Melcangi RC, Panzica GC. Neuroactive steroids and metabolic axis. Front Neuroendocrinol 2018; 48:1-2. [PMID: 29146109 DOI: 10.1016/j.yfrne.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - G C Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Università degli Studi di Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| |
Collapse
|
6
|
Mohammadi H, Joghataei MT, Rahimi Z, Faghihi F, Khazaie H, Farhangdoost H, Mehrpour M. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (-34T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering. BRAIN AND LANGUAGE 2017; 175:47-56. [PMID: 28992603 DOI: 10.1016/j.bandl.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Developmental stuttering is known to be a sexually dimorphic and male-biased speech motor control disorder. In the present case-control study, we investigated the relationship between developmental stuttering and steroid hormones. Serum levels of testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), oestradiol, progesterone, cortisol, and sex hormone binding globulin (SHBG), as well as the 2nd/4th digit ratio (2D:4D), an indicator of prenatal testosterone level, were compared between children who stutter (CWS) and children who do not stutter (CWNS). Moreover, two SNPs (CYP17 -34 T:C (MSP AI) and CYP19 T:C (Trp:Arg)) of cytochrome P450, which is involved in steroid metabolism pathways, were analysed between the groups. Our results showed significantly higher levels of testosterone, DHT, and oestradiol in CWS in comparison with CWNS. The severity of stuttering was positively correlated with the serum levels of testosterone, DHEA, and cortisol, whereas no association was seen between the stuttering and digit ratio, progesterone, or SHBG. The CYP17CC genotype was significantly associated with the disorder.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Department of Psychiatry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hashem Farhangdoost
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM, Melcangi RC. Neuroactive steroids and the peripheral nervous system: An update. Steroids 2015; 103:23-30. [PMID: 25824325 PMCID: PMC6314841 DOI: 10.1016/j.steroids.2015.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 02/09/2023]
Abstract
In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Romano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marzia Pesaresi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gaia Cermenati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Traish AM, Melcangi RC, Bortolato M, Garcia-Segura LM, Zitzmann M. Adverse effects of 5α-reductase inhibitors: What do we know, don't know, and need to know? Rev Endocr Metab Disord 2015; 16:177-98. [PMID: 26296373 DOI: 10.1007/s11154-015-9319-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Steroids are important physiological orchestrators of endocrine as well as peripheral and central nervous system functions. One of the key processes for regulation of these molecules lies in their enzymatic processing by a family of 5α-reductase (5α-Rs) isozymes. By catalyzing a key rate-limiting step in steroidogenesis, this family of enzymes exerts a crucial role not only in the physiological control but also in pathological events. Indeed, both 5α-R inhibition and supplementation of 5α-reduced metabolites are currently used or have been proposed as therapeutic strategies for a wide array of pathological conditions. In particular, the potent 5α-R inhibitors finasteride and dutasteride are used in the treatments of benign prostatic hyperplasia (BPH), as well as in male pattern hair loss (MPHL) known as androgenetic alopecia (AGA). Recent preclinical and clinical findings indicate that 5α-R inhibitors evoke not only beneficial, but also adverse effects. Future studies should investigate the biochemical and physiological mechanisms that underlie the persistence of the adverse sexual side effects to determine why a subset of patients is afflicted with such persistence or irreversible adverse effects. Also a better focus of clinical research is urgently needed to better define those subjects who are likely to be adversely affected by such agents. Furthermore, research on the non-sexual adverse effects such as diabetes, psychosis, depression, and cognitive function are needed to better understand the broad spectrum of the effects these drugs may elicit during their use in treatment of AGA or BPH. In this review, we will summarize the state of art on this topic, overview the key unresolved questions that have emerged on the pharmacological targeting of these enzymes and their products, and highlight the need for further studies to ascertain the severity and duration of the adverse effects of 5α-R inhibitors, as well as their biological underpinnings.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Biochemistry and Department of Urology, Boston University School of Medicine, 715 Albany Street, A502, Boston, MA, 02118, USA.
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences- Center of Excellence on Neurodegenerative Diseases, Iniversità degli Studi di Milano, Milan, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | - Michael Zitzmann
- Centre for Reproductive Medicine and Andrology, University Clinics Muenster, Domagkstrasse 11, D-48149, Muenster, Germany
| |
Collapse
|
9
|
Giatti S, Garcia-Segura LM, Melcangi RC. New steps forward in the neuroactive steroid field. J Steroid Biochem Mol Biol 2015; 153:127-34. [PMID: 25797031 DOI: 10.1016/j.jsbmb.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Evidence accumulated in recent years suggests that the systemic treatment with neuroactive steroids, or the pharmacological modulation of its production by brain cells, represent therapeutic options to promote neuroprotection. However, new findings, which are reviewed in this paper, suggest that the factors to be considered for the design of possible therapies based on neuroactive steroids are more complex than previously thought. Thus, although as recently reported, the nervous system regulates neuroactive steroid synthesis and metabolism in adaptation to modifications in peripheral steroidogenesis, the neuroactive steroid levels in the brain do not fully reflect its levels in plasma. Even, in some cases, neuroactive steroid level modifications occurring in the nervous tissues, under physiological and pathological conditions, are in the opposite direction than in the periphery. This suggests that the systemic treatment with these molecules may have unexpected outcomes on neural steroid levels. In addition, the multiple metabolic pathways and signaling mechanisms of neuroactive steroids, which may change from one brain region to another, together with the existence of regional and sex differences in its neural levels are additional sources of complexity that should be clarified. This complexity in the levels and actions of these molecules may explain why in some cases these molecules have detrimental rather than beneficial actions for the nervous system. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Witt KA, Sandoval KE. Steroids and the blood-brain barrier: therapeutic implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:361-390. [PMID: 25307223 DOI: 10.1016/bs.apha.2014.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Steroids have a wide spectrum of impact, serving as fundamental regulators of nearly every physiological process within the human body. Therapeutic applications of steroids are equally broad, with a diverse range of medications and targets. Within the central nervous system (CNS), steroids influence development, memory, behavior, and disease outcomes. Moreover, steroids are well recognized as to their impact on the vascular endothelium. The blood-brain barrier (BBB) at the level of the brain microvascular endothelium serves as the principle interface between the peripheral circulation and the brain. Steroids have been identified to impact several critical properties of the BBB, including cellular efflux mechanisms, nutrient uptake, and tight junction integrity. Such actions not only influence brain homeostasis but also the delivery of CNS-targeted therapeutics. A greater understanding of the respective steroid-BBB interactions may shed further light on the differential treatment outcomes observed across CNS pathologies. In this chapter, we examine the current therapeutic implications of steroids respective to BBB structure and function, with emphasis on glucocorticoids and estrogens.
Collapse
Affiliation(s)
- Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, Illinois, USA.
| | - Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, Illinois, USA
| |
Collapse
|