1
|
Srour N, Caron A, Michael NJ. Do POMC neurons have a sweet tooth for leptin? Special issue: Role of nutrients in nervous control of energy balance. Biochimie 2024; 223:179-187. [PMID: 36122808 DOI: 10.1016/j.biochi.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Coordinated detection of changes in metabolic state by the nervous system is fundamental for survival. Hypothalamic pro-opiomelanocortin (POMC) neurons play a critical role in integrating metabolic signals, including leptin levels. They also coordinate adaptative responses and thus represent an important relay in the regulation of energy balance. Despite a plethora of work documenting the effects of individual hormones, nutrients, and neuropeptides on POMC neurons, the importance for crosstalk and additive effects between such signaling molecules is still underexplored. The ability of the metabolic state and the concentrations of nutrients, such as glucose, to influence leptin's effects on POMC neurons appears critical for understanding the function and complexity of this regulatory network. Here, we summarize the current knowledge on the effects of leptin on POMC neuron electrical excitability and discuss factors potentially contributing to variability in these effects, with a particular focus on the mouse models that have been developed and the importance of extracellular glucose levels. This review highlights the importance of the metabolic "environment" for determining hypothalamic neuronal responsiveness to metabolic cues and for determining the fundamental effects of leptin on the activity of hypothalamic POMC neurons.
Collapse
Affiliation(s)
- Nader Srour
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada; Montreal Diabetes Research Center, QC, Canada.
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Reichenbach A, Clarke RE, Stark R, Lockie SH, Mequinion M, Dempsey H, Rawlinson S, Reed F, Sepehrizadeh T, DeVeer M, Munder AC, Nunez-Iglesias J, Spanswick D, Mynatt R, Kravitz AV, Dayas CV, Brown R, Andrews ZB. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 2022; 11:72668. [PMID: 35018884 PMCID: PMC8803314 DOI: 10.7554/elife.72668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgRP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.
Collapse
Affiliation(s)
| | - Rachel E Clarke
- Department of Physiology, Monash University, Clayton, Australia
| | - Romana Stark
- Department of Physiology, Monash University, Clayton, Australia
| | - Sarah H Lockie
- Department of Physiology, Monash University, Clayton, Australia
| | | | - Harry Dempsey
- Department of Physiology, Monash University, Clayton, Australia
| | - Sasha Rawlinson
- Department of Physiology, Monash University, Clayton, Australia
| | - Felicia Reed
- Department of Physiology, Monash University, Clayton, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Astrid C Munder
- Department of Physiology, Monash University, Clayton, Australia
| | - Juan Nunez-Iglesias
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - David Spanswick
- Department of Physiology, Monash University, Clayton, Australia
| | - Randall Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States
| | - Alexxai V Kravitz
- Departments of Psychiatry, Washington University in St. Louis, Saint Louis, United States
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Robyn Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Zane B Andrews
- Department of Physiology, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
4
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|
5
|
Resistance exercise attenuates postprandial metabolic responses to a high-fat meal similarly in younger and older men. Nutr Res 2020; 83:73-85. [PMID: 33032071 DOI: 10.1016/j.nutres.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023]
Abstract
This study examined whether an acute bout of resistance exercise (RE) attenuated postprandial responses to a high fat meal (HFM) similarly in younger versus older adult men, and probed relationships among skeletal muscle mass (SMM), age, the metabolic load index (MLI) response, and the improvement in the MLI elicited by RE versus CON. Eleven younger (24 ± 4y) and 9 older (61 ± 5y) men completed RE or control (CON) the night prior to a HFM. Before and 1, 3, and 5 hours after the HFM, blood triglycerides (TG), glucose (GLU), MLI, and cholesterol concentrations were quantified. Following a 7 ± 1-day washout period, participants returned and completed the opposite condition. Independent of age, TGs were 32.1 ± 27.1 mg/dL and 52.7 ± 26.8 mg/dL lower in RE than CON at 3 and 5 hours, respectively. MLI was also 24.3 to 56.9 mg/dL lower in RE than CON from 1 to 5 hours post-meal independent of age. The TG and MLI area under the curves (AUCs) were 15% to 31% lower in RE than CON. The GLU response was greater in the older than younger men at 1 to 5 hours post-meal. Moreover, the average GLU response was 5.6 ± 2.5 mg/dL lower in RE versus CON and was inversely related to SMM across the sample (r = -0.615). However, age, volume, or SMM were not related to the MLIAUC, nor to the improvement elicited by RE. Therefore, although the older men displayed a greater postprandial glucose response than the younger men, RE attenuated the postprandial metabolic response to a HFM similarly in younger and older men.
Collapse
|
6
|
Michael NJ, Watt MJ. Long Chain Fatty Acids Differentially Regulate Sub-populations of Arcuate POMC and NPY Neurons. Neuroscience 2020; 451:164-173. [PMID: 33002557 DOI: 10.1016/j.neuroscience.2020.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Long chain fatty acids (LCFAs) have been suggested to influence the activity of hypothalamic neurons, however, limited studies have attempted to identify the neurochemical phenotype of these neurons. We aimed to determine if physiological levels of LCFAs alter the electrical excitability of pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus. We utilised whole-cell patch-clamp electrophysiology on brain slice preparations from genetic mouse models where green fluorescent protein was expressed in either POMC or NPY expressing cells. All animals had undergone an overnight fast to replicate conditions in which fatty acids would usually increase. Bath application of LCFAs were found to predominantly inhibit POMC neurons and predominantly excite NPY neurons. Differences between oleic and palmitic acid were not observed. These results suggest that LCFAs in the cerebrospinal fluid exert an underlying orexigenic tone to key hypothalamic neurons known to regulate energy homeostasis.
Collapse
Affiliation(s)
- Natalie J Michael
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton 3800, VIC, Australia; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City G1V4G5, Québec, Canada.
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, VIC, Australia
| |
Collapse
|
7
|
Haynes VR, Michael NJ, van den Top M, Zhao FY, Brown RD, De Souza D, Dodd GT, Spanswick D, Watt MJ. A Neural basis for Octanoic acid regulation of energy balance. Mol Metab 2020; 34:54-71. [PMID: 32180560 PMCID: PMC7011014 DOI: 10.1016/j.molmet.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Nutrient sensing by hypothalamic neurons is critical for the regulation of food intake and energy expenditure. We aimed to identify long- and medium-chain fatty acid species transported into the brain, their effects on energy balance, and the mechanisms by which they regulate activity of hypothalamic neurons. Methods Simultaneous blood and cerebrospinal fluid (CSF) sampling was undertaken in rats and metabolic analyses using radiolabeled fatty acid tracers were performed on mice. Electrophysiological recording techniques were used to investigate signaling mechanisms underlying fatty acid-induced changes in activity of pro-opiomelanocortin (POMC) neurons. Results Medium-chain fatty acid (MCFA) octanoic acid (C8:0), unlike long-chain fatty acids, was rapidly transported into the hypothalamus of mice and almost exclusively oxidized, causing rapid, transient reductions in food intake and increased energy expenditure. Octanoic acid differentially regulates the excitability of POMC neurons, activating these neurons directly via GPR40 and inducing inhibition via an indirect non-synaptic, purine, and adenosine receptor-dependent mechanism. Conclusions MCFA octanoic acid is a central signaling nutrient that targets POMC neurons via distinct direct and indirect signal transduction pathways to instigate changes in energy status. These results could explain the beneficial health effects that accompany MCFA consumption. Octanoic acid (C8:0) is rapidly transported from blood to the cerebrospinal fluid. Octanoic acid rapidly reduces food intake and increases energy expenditure. Octanoic acid targets POMC neurons through direct and indirect signaling pathways. Activation of POMC neurons occurs directly through GPR40. Inhibition occurs through a nonsynaptic, purine and adenosine receptor-dependent mechanism.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, 3010, VIC, Australia; Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia
| | - Natalie J Michael
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia; Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Russell D Brown
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia
| | - David De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Garron T Dodd
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - David Spanswick
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; NeuroSolutions Ltd, Coventry, UK.
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
8
|
Moser VA, Uchoa MF, Pike CJ. TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. J Neuroinflammation 2018; 15:306. [PMID: 30396359 PMCID: PMC6217784 DOI: 10.1186/s12974-018-1340-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/22/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obesity exerts negative effects on brain health, including decreased neurogenesis, impaired learning and memory, and increased risk for Alzheimer's disease and related dementias. Because obesity promotes glial activation, chronic neuroinflammation, and neural injury, microglia are implicated in the deleterious effects of obesity. One pathway that is particularly important in mediating the effects of obesity in peripheral tissues is toll-like receptor 4 (TLR4) signaling. The potential contribution of TLR4 pathways in mediating adverse neural outcomes of obesity has not been well addressed. To investigate this possibility, we examined how pharmacological inhibition of TLR4 affects the peripheral and neural outcomes of diet-induced obesity. METHODS Male C57BL6/J mice were maintained on either a control or high-fat diet for 12 weeks in the presence or absence of the specific TLR4 signaling inhibitor TAK-242. Outcomes examined included metabolic indices, a range of behavioral assessments, microglial activation, systemic and neuroinflammation, and neural health endpoints. RESULTS Peripherally, TAK-242 treatment was associated with partial inhibition of inflammation in the adipose tissue but exerted no significant effects on body weight, adiposity, and a range of metabolic measures. In the brain, obese mice treated with TAK-242 exhibited a significant reduction in microglial activation, improved levels of neurogenesis, and inhibition of Alzheimer-related amyloidogenic pathways. High-fat diet and TAK-242 were associated with only very modest effects on a range of behavioral measures. CONCLUSIONS These results demonstrate a significant protective effect of TLR4 inhibition on neural consequences of obesity, findings that further define the role of microglia in obesity-mediated outcomes and identify a strategy for improving brain health in obese individuals.
Collapse
Affiliation(s)
- V. Alexandra Moser
- 0000 0001 2156 6853grid.42505.36Neuroscience Graduate Program, University of Southern California, 3641 Watt Way, HNB 120, Los Angeles, CA 90089 USA
| | - Mariana F. Uchoa
- 0000 0001 2156 6853grid.42505.36Neuroscience Graduate Program, University of Southern California, 3641 Watt Way, HNB 120, Los Angeles, CA 90089 USA
| | - Christian J. Pike
- 0000 0001 2156 6853grid.42505.36Neuroscience Graduate Program, University of Southern California, 3641 Watt Way, HNB 120, Los Angeles, CA 90089 USA ,0000 0001 2156 6853grid.42505.36Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191 USA
| |
Collapse
|