1
|
Buzdin AA, Heydarov RN, Golounina OO, Suntsova MV, Matrosova AV, Bondarenko EV, Roumiantsev SA, Sorokin MI, Kholodenko RV, Kholodenko IV, Chekhonin VP, Plaksina EV, Rozhinskaya LY, Melnichenko GA, Belaya ZE. Transcriptome-Wide Analysis of Pituitary and Ectopic Adrenocorticotropic Hormone-Secreting Tumors. Cancers (Basel) 2025; 17:658. [PMID: 40002253 PMCID: PMC11852724 DOI: 10.3390/cancers17040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Endogenous Cushing's syndrome (CS) is a rare neuroendocrine disorder characterized by either secondary cortisol increases due to an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor (Cushing's disease (CD)), an ACTH-secreting neuroendocrine tumor (NET) of non-pituitary origin (ectopic ACTH syndrome (EAS)), or by the primarily adrenal autonomous overproduction of cortisol [...].
Collapse
Affiliation(s)
- Anton A. Buzdin
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Rustam N. Heydarov
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Olga O. Golounina
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Maria V. Suntsova
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Alina V. Matrosova
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ekaterina V. Bondarenko
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Sergey A. Roumiantsev
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Maksim I. Sorokin
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Oncobox LLC, Moscow 119991, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia;
| | - Vladimir P. Chekhonin
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Evgeniya V. Plaksina
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Liudmila Y. Rozhinskaya
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Galina A. Melnichenko
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Zhanna E. Belaya
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| |
Collapse
|
2
|
Regazzo D, Avallone S, MacSweeney CP, Sergeev E, Howe D, Godwood A, Bennett KA, Brown AJH, Barnes M, Occhi G, Barbot M, Faggian D, Tropeano MP, Losa M, Lasio G, Scaroni C, Pecori Giraldi F. A novel somatostatin receptor ligand for human ACTH - and GH -secreting pituitary adenomas. Eur J Endocrinol 2024; 190:K8-K16. [PMID: 38123488 DOI: 10.1093/ejendo/lvad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Somatostatin receptor ligands have come to play a pivotal role in the treatment of both ACTH- and GH-secreting pituitary adenomas. Clinical efficacy averages 30-50%, thus a considerable number of patients with Cushing's disease or acromegaly remain unresponsive to this therapeutic approach. HTL0030310 is a new somatostatin receptor ligand selective for subtype 5 over subtype 2, thus with a different receptor profile compared to clinical somatostatin receptor ligands. DESIGN Assessment of the effect of HTL0030310 on hormone secretion in human ACTH- and GH-secreting pituitary adenomas in vitro. METHODS Primary cultures from 3 ACTH-secreting and 5 GH-secreting pituitary adenomas were treated with 1, 10 and 100 nM HTL0030310 alone or with 10 nM CRH or GHRH, respectively. Parallel incubations with 10 nM pasireotide were also carried out. ACTH and GH secretion were assessed after 4 and 24 hour incubation; SSTR2, SSTR3, SSTR5, GH and POMC expression were evaluated after 24 hours. RESULTS HTL0030310 reduced unchallenged ACTH and POMC levels up to 50% in 2 ACTH-secreting adenomas and blunted CRH-stimulated ACTH/POMC by 20-70% in all 3 specimens. A reduction in spontaneous GH secretion was observed in 4 GH-secreting adenomas and in 2 specimens during GHRH co-incubation. SSTRs expression was detected in all specimens. CONCLUSIONS This first study on a novel somatostatin receptor 5-preferring ligand indicates that HTL0030310 can inhibit hormonal secretion in human ACTH- and GH-secreting pituitary adenomas. These findings suggest a potential new avenue for somatostatin ligands in the treatment of Cushing's disease and acromegaly.
Collapse
Affiliation(s)
- Daniela Regazzo
- Endocrinology Unit, University Hospital of Padova, Padua 35143
| | - Serena Avallone
- Endocrinology Unit, University Hospital of Padova, Padua 35143
- Department of Clinical and Molecular Science, Università Politecnica delle Marche, Ancona 60126
| | | | | | - David Howe
- Sosei Heptares, Cambridge, CB21 6DG, United Kingdom
| | - Alex Godwood
- Sosei Heptares, Cambridge, CB21 6DG, United Kingdom
| | | | | | - Matt Barnes
- Sosei Heptares, Cambridge, CB21 6DG, United Kingdom
| | - Gianluca Occhi
- Department of Biology, University of Padova, Padua 35143
| | - Mattia Barbot
- Endocrinology Unit, University Hospital of Padova, Padua 35143
| | - Diego Faggian
- Laboratory Medicine, Department of Medicine, University Hospital of Padova, Padua 35143
| | - Maria Pia Tropeano
- Department of Neurosurgery, Humanitas Clinical and Research Center IRCCS, Rozzano 20089
| | - Marco Losa
- Department of Neurosurgery, Ospedale San Raffaele, Milan 20132
| | - Giovanni Lasio
- Department of Neurosurgery, Humanitas Clinical and Research Center IRCCS, Rozzano 20089
| | - Carla Scaroni
- Endocrinology Unit, University Hospital of Padova, Padua 35143
| | | |
Collapse
|
3
|
Rebollar-Vega RG, Zuarth-Vázquez JM, Hernández-Ramírez LC. Clinical Spectrum of USP8 Pathogenic Variants in Cushing's Disease. Arch Med Res 2023; 54:102899. [PMID: 37925320 DOI: 10.1016/j.arcmed.2023.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Cushing's disease (CD) is a life-threatening condition with a challenging diagnostic process and scarce treatment options. CD is caused by usually benign adrenocorticotrophic hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs), known as corticotropinomas. These tumors are predominantly of sporadic origin, and usually derive from the monoclonal expansion of a mutated cell. Somatic activating variants located within a hotspot of the USP8 gene are present in 11-62% of corticotropinomas, making USP8 the most frequent genetic driver of corticotroph neoplasia. In contrast, other somatic defects such as those affecting the glucocorticoid receptor gene (NR3C1), the BRAF oncogene, the deubiquitinase-encoding gene USP48, and TP53 are infrequent. Moreover, patients with familial tumor syndromes, such as multiple endocrine neoplasia, familial isolated pituitary adenoma, and DICER1 rarely develop corticotropinomas. One of the main molecular alterations in USP8-driven tumors is an overactivation of the epidermal growth factor receptor (EGFR) signaling pathway, which induces ACTH production. Hotspot USP8 variants lead to persistent EGFR overexpression, thereby perpetuating the hyper-synthesis of ACTH. More importantly, they condition a characteristic transcriptomic signature that might be useful for the clinical prognosis of patients with CD. Nevertheless, the clinical phenotype associated with USP8 variants is less well defined. Hereby we discuss the current knowledge on the molecular pathogenesis and clinical picture associated with USP8 hotspot variants. We focus on the potential significance of the USP8 mutational status for the design of tailored clinical strategies in CD.
Collapse
Affiliation(s)
- Rosa G Rebollar-Vega
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julia M Zuarth-Vázquez
- Department of Endocrinology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
4
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
5
|
Regazzo D, Mondin A, Scaroni C, Occhi G, Barbot M. The Role of Glucocorticoid Receptor in the Pathophysiology of Pituitary Corticotroph Adenomas. Int J Mol Sci 2022; 23:ijms23126469. [PMID: 35742910 PMCID: PMC9224504 DOI: 10.3390/ijms23126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocorticotropic Hormone (ACTH)-secreting pituitary adenomas are rare tumors characterized by autonomous ACTH secretion with a consequent increase in circulating cortisol levels. The resulting clinical picture is called Cushing’s disease (CD), a severe condition burdened with high morbidity and mortality. Apart from increased cortisol levels, CD patients exhibit a partial resistance to the negative glucocorticoid (GC) feedback, which is of paramount clinical utility, as the lack of suppression after dexamethasone administration is one of the mainstays for the differential diagnosis of CD. Since the glucocorticoid receptor (GR) is the main regulator of negative feedback of the hypothalamic–pituitary–adrenal axis in normal conditions, its implication in the pathophysiology of ACTH-secreting pituitary tumors is highly plausible. In this paper, we review GR function and structure and the mechanisms of GC resistance in ACTH-secreting pituitary tumors and assess the effects of the available medical therapies targeting GR on tumor growth.
Collapse
Affiliation(s)
- Daniela Regazzo
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Alessandro Mondin
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Gianluca Occhi
- Department of Biology, University of Padova, 35128 Padova, Italy;
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
- Correspondence:
| |
Collapse
|
6
|
Treppiedi D, Barbieri AM, Di Muro G, Marra G, Mangili F, Catalano R, Esposito E, Ferrante E, Serban AL, Locatelli M, Lania AG, Spada A, Arosio M, Peverelli E, Mantovani G. Genetic Profiling of a Cohort of Italian Patients with ACTH-Secreting Pituitary Tumors and Characterization of a Novel USP8 Gene Variant. Cancers (Basel) 2021; 13:cancers13164022. [PMID: 34439178 PMCID: PMC8392476 DOI: 10.3390/cancers13164022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cushing’s Disease (CD) is a rare but severe endocrine disorder due to an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor, and pathogenetics remained a puzzling issue for a long time. The recent identification of somatic mutations in the 14-3-3 protein binding motif of ubiquitin specific peptidase 8 gene (USP8), present in a consistent subgroup of ACTH-secreting pituitary tumors, have represented a major advance in the understanding of CD pathogenesis. In our cohort of 60 patients we found an incidence of 11.7% of USP8 recurrent somatic mutations whereas a novel USP8 variant (G664R) located upstream the canonical USP8 mutational hotspot was identified in one case. This alteration has never been reported by previous records. The present study provides USP8 G664R variant in vitro functional characterization in AtT-20 cells and demonstrates its possible implication in ACTH-secreting tumor pathogenesis, contributing to enlarge the genetic landscape of CD. Abstract Cushing’s Disease (CD) is a rare condition characterized by an overproduction of ACTH by an ACTH-secreting pituitary tumor, resulting in an excess of cortisol release by the adrenal glands. Somatic mutations in the deubiquitinases USP8 and USP48, and in BRAF genes, have been reported in a subset of patients affected by CD. The aim of this study was to characterize the genetic profile of a cohort of 60 patients with ACTH-secreting tumors, searching for somatic mutations in USP8, USP48, and BRAF hotspot regions. Seven patients were found to carry USP8 somatic mutations in the well-characterized 14-3-3 protein binding motif (n = 5 P720R, n = 1 P720Q, n = 1 S718del); 2 patients were mutated in USP48 (M415I); no mutation was identified in BRAF. In addition, a novel USP8 variant, G664R, located in exon 14, upstream of the 14-3-3 protein binding motif, was identified in 1 patient. Functional characterization of USP8 G664R variant was performed in murine corticotroph tumor AtT-20 cells. Transient transfection with the USP8 G664R variant resulted in a significant increase of ACTH release and cell proliferation (+114.5 ± 53.6% and +28.3 ± 2.6% vs. empty vector transfected cells, p < 0.05, respectively). Notably, USP8 proteolytic cleavage was enhanced in AtT-20 cells transfected with G664R USP8 (1.86 ± 0.58–fold increase of N-terminal USP8 fragment, vs. WT USP8, p < 0.05). Surprisingly, in situ Proximity Ligation Assay (PLA) experiments showed a significant reduction of PLA positive spots, indicating USP8/14-3-3 proteins colocalization, in G664R USP8 transfected cells with respect to WT USP8 transfected cells (−47.9 ± 6.6%, vs. WT USP8, p < 0.001). No significant difference in terms of ACTH secretion, cell proliferation and USP8 proteolytic cleavage, and 14-3-3 proteins interaction was observed between G664R USP8 and S718del USP8 transfected cells. Immunofluorescence experiments showed that, contrary to S718del USP8 but similarly to WT USP8 and other USP8 mutants, G664R USP8 displays an exclusive cytoplasmic localization. In conclusion, somatic mutations were found in USP8 (13.3% vs. 36.5% incidence of all published mutations) and USP48 (3.3% vs. 13.3% incidence) hotspot regions. A novel USP8 variant was identified in a CD patient, and in vitro functional studies in AtT-20 cells suggested that this somatic variant might be clinically relevant in ACTH-secreting tumor pathogenesis, expanding the characterization of USP8 functional domains.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (A.L.S.)
| | - Andreea Liliana Serban
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (A.L.S.)
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Gerardo Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (A.L.S.)
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
- Correspondence: ; Tel.: +39-02-55033512
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (A.M.B.); (G.D.M.); (G.M.); (F.M.); (R.C.); (E.E.); (A.S.); (M.A.); (G.M.)
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (A.L.S.)
| |
Collapse
|
7
|
Large Scale Molecular Studies of Pituitary Neuroendocrine Tumors: Novel Markers, Mechanisms and Translational Perspectives. Cancers (Basel) 2021; 13:cancers13061395. [PMID: 33808624 PMCID: PMC8003417 DOI: 10.3390/cancers13061395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pituitary neuroendocrine tumors are non-cancerous tumors of the pituitary gland, that may overproduce hormones leading to serious health conditions or due to tumor size cause chronic headache, vertigo or visual impairment. In recent years pituitary neuroendocrine tumors are studied with the latest molecular biology methods that simultaneously investigate a large number of factors to understand the mechanisms of how these tumors develop and how they could be diagnosed or treated. In this review article, we have studied literature reports, compiled information and described molecular factors that could affect the development and clinical characteristics of pituitary neuroendocrine tumors, discovered factors that overlap between several studies using large scale molecular analysis and interpreted the potential involvement of these factors in pituitary tumor development. Overall, this study provides a valuable resource for understanding the biology of pituitary neuroendocrine tumors. Abstract Pituitary neuroendocrine tumors (PitNETs) are non-metastatic neoplasms of the pituitary, which overproduce hormones leading to systemic disorders, or tumor mass effects causing headaches, vertigo or visual impairment. Recently, PitNETs have been investigated in large scale (exome and genome) molecular analyses (transcriptome microarrays and sequencing), to uncover novel markers. We performed a literature analysis on these studies to summarize the research data and extrapolate overlapping gene candidates, biomarkers, and molecular mechanisms. We observed a tendency in samples with driver mutations (GNAS, USP8) to have a smaller overall mutational rate, suggesting driver-promoted tumorigenesis, potentially changing transcriptome profiles in tumors. However, direct links from drivers to signaling pathways altered in PitNETs (Notch, Wnt, TGF-β, and cell cycle regulators) require further investigation. Modern technologies have also identified circulating nucleic acids, and pinpointed these as novel PitNET markers, i.e., miR-143-3p, miR-16-5p, miR-145-5p, and let-7g-5p, therefore these molecules must be investigated in the future translational studies. Overall, large-scale molecular studies have provided key insight into the molecular mechanisms behind PitNET pathogenesis, highlighting previously reported molecular markers, bringing new candidates into the research field, and reapplying traditional perspectives to newly discovered molecular mechanisms.
Collapse
|
8
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
9
|
Distinct Pattern of Endoplasmic Reticulum Protein Processing and Extracellular Matrix Proteins in Functioning and Silent Corticotroph Pituitary Adenomas. Cancers (Basel) 2020; 12:cancers12102980. [PMID: 33066652 PMCID: PMC7650558 DOI: 10.3390/cancers12102980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Corticotroph pituitary adenomas present a spectrum of functionality regarding hormonal production, ranging from functioning to silent tumors. Moreover, they show different invasiveness and recurrent behavior profiles, the silent being considered an aggressive type of adenomas. Through analyses of global transcriptome and proteome, we show that both groups expressed genes and protein related to protein synthesis and vesicular transport, and present a distinct pattern of collagen/ extracellular matrix proteins. Endoplasmic reticulum protein processing is a key factor for hormone production in functioning corticotroph adenomas. Furthermore, a distinct cell adhesion profile in silent corticotroph adenomas may explain the aggressive behavior. Together, our findings shed light on the different repertoires of activated signaling pathways in corticotroph pituitary adenomas and may reveal new potential medical targets. Abstract Functioning (FCA) and silent corticotroph (SCA) pituitary adenomas act differently from a clinical perspective, despite both subtypes showing positive TBX19 (TPIT) and/or adrenocorticotropic hormone (ACTH) staining by immunohistochemistry. They are challenging to treat, the former due to functional ACTH production and consequently hypercortisolemia, and the latter due to invasive and recurrent behavior. Moreover, the molecular mechanisms behind their distinct behavior are not clear. We investigated global transcriptome and proteome changes in order to identify signaling pathways that can explain FCA and SCA differences (e.g., hormone production vs. aggressive growth). In the transcriptomic study, cluster analyses of differentially expressed genes revealed two distinct groups in accordance with clinical and histological classification. However, in the proteomic study, a greater degree of heterogeneity within the SCA group was found. Genes and proteins related to protein synthesis and vesicular transport were expressed by both adenoma groups, although different types and a distinct pattern of collagen/extracellular matrix proteins were presented by each group. Moreover, several genes related to endoplasmic reticulum protein processing were overexpressed in the FCA group. Together, our findings shed light on the different repertoires of activated signaling pathways in corticotroph adenomas, namely, the increased protein processing capacity of FCA and a specific pattern of adhesion molecules that may play a role in the aggressiveness of SCA.
Collapse
|
10
|
Wang Z, Guo X, Gao L, Deng K, Lian W, Bao X, Feng M, Duan L, Zhu H, Xing B. The Immune Profile of Pituitary Adenomas and a Novel Immune Classification for Predicting Immunotherapy Responsiveness. J Clin Endocrinol Metab 2020; 105:5870365. [PMID: 32652004 PMCID: PMC7413599 DOI: 10.1210/clinem/dgaa449] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT The tumor immune microenvironment is associated with clinical outcomes and immunotherapy responsiveness. OBJECTIVE To investigate the intratumoral immune profile of pituitary adenomas (PAs) and its clinical relevance and to explore a novel immune classification for predicting immunotherapy responsiveness. DESIGN, PATIENTS, AND METHODS The transcriptomic data from 259 PAs and 20 normal pituitaries were included for analysis. The ImmuCellAI algorithm was used to estimate the abundance of 24 types of tumor-infiltrating immune cells (TIICs) and the expression of immune checkpoint molecules (ICMs). RESULTS The distributions of TIICs differed between PAs and normal pituitaries and varied among PA subtypes. T cells dominated the immune microenvironment across all subtypes of PAs. The tumor size and patient age were correlated with the TIIC abundance, and the ubiquitin-specific protease 8 (USP8) mutation in corticotroph adenomas influenced the intratumoral TIIC distributions. Three immune clusters were identified across PAs based on the TIIC distributions. Each cluster of PAs showed unique features of ICM expression that were correlated with distinct pathways related to tumor development and progression. CTLA4/CD86 expression was upregulated in cluster 1, whereas programmed cell death protein 1/programmed cell death 1 ligand 2 (PD1/PD-L2) expression was upregulated in cluster 2. Clusters 1 and 2 exhibited a "hot" immune microenvironment and were predicted to exhibit higher immunotherapy responsiveness than cluster 3, which exhibited an overall "cold" immune microenvironment. CONCLUSIONS We summarized the immune profile of PAs and identified 3 novel immune clusters. These findings establish a foundation for further immune studies on PAs and provide new insights into immunotherapy strategies for PAs.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Lian Duan
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
- Correspondence and Reprint Requests: Bing Xing, Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, P. R. China. E-mail:
| |
Collapse
|
11
|
Assessment of Coagulation Parameters in Women Affected by Endometriosis: Validation Study and Systematic Review of the Literature. Diagnostics (Basel) 2020; 10:diagnostics10080567. [PMID: 32784640 PMCID: PMC7460223 DOI: 10.3390/diagnostics10080567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
The presence of endometriosis determines an inflammatory response locally. The objective of this validation study and systematic review was to assess systemic levels of coagulation and inflammatory parameters in women with or without the disease. We conducted a retrospective analysis of a database prospectively collected from January 2017 to February 2020 including n = 572 women who underwent laparoscopic surgery for endometriosis (cases, n = 324) or other benign gynecologic diseases (controls, n = 248). Inflammatory markers and coagulation parameters were determined. An advanced systematic search of the literature on the same parameters was conducted up to April 2020. A significantly higher neutrophil count was found in endometriosis patients. Patients with endometriomas and stage III–IV disease had a significantly lower absolute lymphocyte count and shortened activated partial thromboplastin time (aPTT) values. In the final regression model, aPTT retained significant predictive value for stage III–IV endometriosis (odds ratio (OR) = 0.002, 95% confidence interval (CI) = 0.00–0.445; p = 0.024). Results from the n = 14 included studies in the systematic review are characterized by a high variability, but some consistency has been found for alterations in thrombin time, platelet-to-lymphocyte ratio, and neutrophil count associated with endometriosis. Modest systemic changes of some inflammatory and coagulation parameters are associated with endometriosis. Indeed, all the modifications detected are still within the normal reference intervals, explaining the high heterogeneity among studies.
Collapse
|
12
|
Pecori Giraldi F, Cassarino MF, Sesta A, Terreni M, Lasio G, Losa M. Sexual Dimorphism in Cellular and Molecular Features in Human ACTH-Secreting Pituitary Adenomas. Cancers (Basel) 2020; 12:E669. [PMID: 32183012 PMCID: PMC7139870 DOI: 10.3390/cancers12030669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background. Cushing's disease presents gender disparities in prevalence and clinical course. Little is known, however, about sexual dimorphism at the level of the corticotrope adenoma itself. The aim of the present study was to evaluate molecular features of ACTH-secreting pituitary adenomas collected from female and male patients with Cushing's disease. (2) Methods. We analyzed 153 ACTH-secreting adenomas collected from 31 men and 122 women. Adenomas were established in culture and ACTH synthesis and secretion assessed in basal conditions as well as during incubation with CRH or dexamethasone. Concurrently, microarray analysis was performed on formalin-fixed specimens and differences in the expression profiles between specimens from male and female patients identified. (3) Results. ACTH medium concentrations in adenomas obtained from male patients were significantly lower than those observed in adenomas from female patients. This could be observed for baseline as well as modulated secretion. Analysis of corticotrope transcriptomes revealed considerable similarities with few, selected differences in functional annotations. Differentially expressed genes comprised genes with known sexual dimorphism, genes involved in tumour development and genes relevant to pituitary pathophysiology. (4) Conclusions. Our study shows for the first time that human corticotrope adenomas present sexual dimorphism and underlines the need for a gender-dependent analysis of these tumours. Differentially expressed genes may represent the basis for gender-tailored target therapy.
Collapse
Affiliation(s)
- Francesca Pecori Giraldi
- Department of Clinical Sciences & Community Health, University of Milan; 20122 Milan, Italy
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico, 20095 Milan, Italy
| | - Maria Francesca Cassarino
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico, 20095 Milan, Italy
| | - Antonella Sesta
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico, 20095 Milan, Italy
| | | | - Giovanni Lasio
- Deparment of Neurosurgery, Istituto Clinico Humanitas, 20089 Rozzano (Milan), Italy;
| | - Marco Losa
- Department of Neurosurgery, Ospedale San Raffaele, 20136 Milan, Italy;
| |
Collapse
|
13
|
Castellnou S, Vasiljevic A, Lapras V, Raverot V, Alix E, Borson-Chazot F, Jouanneau E, Raverot G, Lasolle H. SST5 expression and USP8 mutation in functioning and silent corticotroph pituitary tumors. Endocr Connect 2020; 9:EC-20-0035.R1. [PMID: 32101529 PMCID: PMC7077525 DOI: 10.1530/ec-20-0035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Somatostatin receptor type 5 (SST5) is inconsistently expressed by corticotroph tumors, with higher expression found in corticotropinomas having ubiquitin-specific protease 8 (USP8) mutations. Aims were to study the correlation between characteristics of corticotropinomas and SST5 expression/USP8 mutation status and to describe the response to pasireotide in 5 patients. DESIGN Retrospective cohort study. METHODS Clinico-biochemical, radiological and pathological data of 62 patients, operated for a functioning or silent corticotropinoma between 2013 and 2017, were collected. SST5 expression was measured by immunohistochemistry (clone UMB-4, Abcam, IRS>1 being considered positive) and Sanger sequencing was performed on 50 tumors to screen for USP8 mutations. RESULTS SST5 expression was positive in 26/62 pituitary tumors. A moderate or strong IRS was found in 15/58 corticotropinomas and in 13/35 functioning corticotropinomas. Among functioning tumors, those expressing SST5 were more frequent in women (22/24 vs 9/15, P=0.04) and had a lower grade (P=0.04) compared to others. USP8 mutations were identified in 13/50 pituitary tumors and were more frequent in functioning compared to silent tumors (11/30 vs 2/20, P=0.05). SST5 expression was more frequent in USP8mut vs USP8wt tumors (10/11 vs 7/19, P=0.007). Among treated patients, normal urinary free cortisol levels were obtained in 3 patients (IRS 0, 2, 6) while a 4-fold decrease was observed in one patient (IRS 4). CONCLUSION SST5 expression appears to be associated with functioning, USP8mut and lower grade corticotropinomas. A correlation between SST5 expression or USP8mut and response to pasireotide remains to be confirmed.
Collapse
Affiliation(s)
- Solène Castellnou
- Service d’Endocrinologie, Centre de Référence des Maladies Rares de l’Hypophyse HYPO, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Université Lyon 1, Villeurbanne, France
| | - Alexandre Vasiljevic
- Université Lyon 1, Villeurbanne, France
- Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- INSERM U1052, CNRS, UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Véronique Lapras
- Service de Radiologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Véronique Raverot
- Laboratoire d’Hormonologie, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Eudeline Alix
- Département de Cytogénétique, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Françoise Borson-Chazot
- Service d’Endocrinologie, Centre de Référence des Maladies Rares de l’Hypophyse HYPO, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Université Lyon 1, Villeurbanne, France
| | - Emmanuel Jouanneau
- Université Lyon 1, Villeurbanne, France
- INSERM U1052, CNRS, UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Service de Neurochirurgie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Gérald Raverot
- Service d’Endocrinologie, Centre de Référence des Maladies Rares de l’Hypophyse HYPO, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Université Lyon 1, Villeurbanne, France
- INSERM U1052, CNRS, UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hélène Lasolle
- Service d’Endocrinologie, Centre de Référence des Maladies Rares de l’Hypophyse HYPO, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Université Lyon 1, Villeurbanne, France
- INSERM U1052, CNRS, UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
14
|
Hu J, Yin H, Li B, Yang H. Identification of Transcriptional Metabolic Dysregulation in Subtypes of Pituitary Adenoma by Integrated Bioinformatics Analysis. Diabetes Metab Syndr Obes 2019; 12:2441-2451. [PMID: 31819570 PMCID: PMC6885545 DOI: 10.2147/dmso.s226056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pituitary adenoma (PA) is a prevalent intracranial tumor. Metabolites differ between pituitary tumor and healthy tissues or among different tumor subtypes. However, the transcriptional changes in metabolic enzymes, which are usually seemed as targets for metabolic therapy, remain unidentified. METHODS Using microarray data for 160 samples from the Gene Expression Omnibus database, across the four most common tumor subtypes, we present the integrated identification of differentially expressed genes (DEGs) between tumors and controls. RESULTS Subtype-specific DEGs revealed 1081 prolactin tumor-specific DEGs, 437 nonfunctioning tumor-specific DEGs, and 217 common DEGs among the four subtypes. Functional enrichment showed that a lot of biological functions related to metabolism had changed. Twenty-one prolactin and twenty-three nonfunctioning tumor-specific metabolic-related DEGs are mainly involved in fatty acid and nucleotide metabolism, redox reaction, and gluconeogenesis. Eighteen metabolic-related DEGs enriched in the metabolism of xenobiotics by the cytochrome P450 pathway, sulfur metabolism, retinoid metabolism, and glucose homeostasis were abnormal in all subtypes of PA. CONCLUSION Based on a comprehensive bioinformatics analysis of the available PA-related transcriptomics data, we identified specific DEGs related to metabolism, and some of them might be new attractive therapeutic targets. Especially, PDK4 and PCK1 might be new attractive biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jintao Hu
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, People’s Republic of China
| | - Huachun Yin
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, People’s Republic of China
- College of Life Sciences, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
15
|
Sesta A, Cassarino MF, Terreni M, Ambrogio AG, Libera L, Bardelli D, Lasio G, Losa M, Pecori Giraldi F. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2019; 110:119-129. [PMID: 31280266 PMCID: PMC6979434 DOI: 10.1159/000500688] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been shown to occur in ACTH-secreting pituitary adenomas, thus calling attention to the ubiquitin system in corticotrope adenomas. OBJECTIVES Assess the consequences of USP8 mutations and establish the role of ubiquitin on ACTH turnover in human ACTH-secreting pituitary adenomas. METHODS USP8 mutation status was established in 126 ACTH-secreting adenomas. Differences in ACTH secretion and POMC expression from adenoma primary cultures and in microarray gene expression profiles from archival specimens were sought according to USP8 sequence. Ubiquitin/ACTH coimmunoprecipitation and incubation with MG132, a proteasome inhibitor, were performed in order to establish whether ubiquitin plays a role in POMC/ACTH degradation in corticotrope adenomas. RESULTS USP8 mutations were identified in 29 adenomas (23%). Adenomas presenting USP8 mutations secreted greater amounts of ACTH and expressed POMC at higher levels compared to USP wild-type specimens. USP8 mutant adenomas were also more sensitive to modulation by CRH and dexamethasone in vitro. At microarray analysis, genes associated with endosomal protein degradation and membrane components were downregulated in USP8 mutant adenomas as were AVPR1B, IL11RA, and PITX2. Inhibition of the ubiquitin-proteasome pathway increased ACTH secretion and POMC itself proved a target of ubiquitylation, independently of USP8 sequence status. CONCLUSIONS Our study has shown that USP8 mutant ACTH-secreting adenomas present a more "typical" corticotrope phenotype and reduced expression of several genes associated with protein degradation. Further, ubiquitylation is directly involved in intracellular ACTH turnover, suggesting that the ubiquitin-proteasome system may represent a target for treatment of human ACTH-secreting adenomas.
Collapse
Affiliation(s)
- Antonella Sesta
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Maria Francesca Cassarino
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | | | - Alberto G Ambrogio
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Laura Libera
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Donatella Bardelli
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Giovanni Lasio
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marco Losa
- Department of Neurosurgery, Ospedale San Raffaele, Milan, Italy
| | - Francesca Pecori Giraldi
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy,
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
16
|
Losa M, Mortini P, Pagnano A, Detomas M, Cassarino MF, Pecori Giraldi F. Clinical characteristics and surgical outcome in USP8-mutated human adrenocorticotropic hormone-secreting pituitary adenomas. Endocrine 2019; 63:240-246. [PMID: 30315484 DOI: 10.1007/s12020-018-1776-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been described in patients with Cushing's disease (CD). The aim of the study is to verify whether USP8 mutation may predict early and late outcome of pituitary surgery in patients with CD operated at a single institution. METHODS We performed a retrospective genetic analysis of 92 adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. Specimens were screened for USP8 hotspot mutations in the exon 14 with Sanger sequencing. Hormonal and surgical data were compared between USP8 variant carriers and wild-type tumors. RESULTS USP8 variants were detected in 22 adenomas (23.9%) with higher prevalence in women (28.9% vs. 5.3% in men; p < 0.05). No significant difference in hormonal levels and tumoral features in relation to USP8 status was observed. Interestingly, USP8-variant carriers were more likely to achieve surgical remission than wild-type adenomas (100% vs. 75.7%; p = 0.01). Conversely, recurrence of CD occurred in 23% of USP8-mutated patients and in 13% of patients with wild-type adenoma. The recurrence-free survival did not differ significantly between the two groups (p = 0.42). CONCLUSIONS ACTH-secreting pituitary adenomas carrying somatic USP8 mutations are associated with a greater likelihood of surgical remission in patients operated by a single neurosurgeon. Recurrence rates are not related with USP8-variant status.
Collapse
Affiliation(s)
- Marco Losa
- Pituitary Unit of the Division of Neurosurgery, IRCCS San Raffaele, University Vita-Salute, Milan, MI, Italy.
| | - Pietro Mortini
- Pituitary Unit of the Division of Neurosurgery, IRCCS San Raffaele, University Vita-Salute, Milan, MI, Italy
| | - Angela Pagnano
- Pituitary Unit of the Division of Neurosurgery, IRCCS San Raffaele, University Vita-Salute, Milan, MI, Italy
| | - Mario Detomas
- Pituitary Unit of the Division of Neurosurgery, IRCCS San Raffaele, University Vita-Salute, Milan, MI, Italy
| | | | - Francesca Pecori Giraldi
- Istituto Auxologico Italiano IRCCS, Neuroendocrine Research Laboratory, Milan, MI, Italy
- Department of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Cassarino MF, Ambrogio AG, Cassarino A, Terreni MR, Gentilini D, Sesta A, Cavagnini F, Losa M, Pecori Giraldi F. Gene expression profiling in human corticotroph tumours reveals distinct, neuroendocrine profiles. J Neuroendocrinol 2018; 30:e12628. [PMID: 29920815 PMCID: PMC6175113 DOI: 10.1111/jne.12628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Adrenocorticotrophic hormone (ACTH)-secreting pituitary adenomas give rise to a severe endocrinological disorder, comprising Cushing's disease, with multifaceted clinical presentation and treatment outcomes. Experimental studies suggest that the disease variability is inherent to the pituitary tumour, thus indicating the need for further studies into tumour biology. The present study evaluated transcriptome expression pattern in a large series of ACTH-secreting pituitary adenoma specimens in order to identify molecular signatures of these tumours. Gene expression profiling of formalin-fixed, paraffin-embedded specimens from 40 human ACTH-secreting pituitary adenomas revealed the significant expression of genes involved in protein biosynthesis and ribosomal function, in keeping with the neuroendocrine cell profile. Unsupervised cluster analysis identified 3 distinct gene profile clusters and several genes were uniquely overexpressed in a given cluster, accounting for different molecular signatures. Of note, gene expression profiles were associated with clinical features, such as the age and size of the tumour. Altogether, the findings of the present study show that corticotroph tumours are characterised by a neuroendocrine gene expression profile and present subgroup-specific molecular features.
Collapse
Affiliation(s)
| | - Alberto G. Ambrogio
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
- Department of Clinical Sciences & Community HealthUniversity of MilanMilanItaly
| | - Andrea Cassarino
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | | | - Davide Gentilini
- Molecular Biology LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Antonella Sesta
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Francesco Cavagnini
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Marco Losa
- Department of NeurosurgeryOspedale San RaffaeleMilanItaly
| | - Francesca Pecori Giraldi
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
- Department of Clinical Sciences & Community HealthUniversity of MilanMilanItaly
| |
Collapse
|