1
|
Bréhat J, Issop L, Morin D. History of Tspo deletion and induction in vivo: Phenotypic outcomes under physiological and pathological situations. Biochimie 2024; 224:80-90. [PMID: 38432291 DOI: 10.1016/j.biochi.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
The mitochondrial translocator protein (TSPO) is an outer mitochondrial protein membrane with high affinity for cholesterol. It is expressed in most tissues but is more particularly enriched in steroidogenic tissues. TSPO is involved in various biological mechanisms and TSPO regulation has been related to several diseases. However, despite a considerable number of published studies interested in TSPO over the past forty years, the precise function of the protein remains obscure. Most of the functions attributed to TSPO have been identified using pharmacological ligands of this protein, leading to much debate about the accuracy of these findings. In addition, research on the physiological role of TSPO has been hampered by the lack of in vivo deletion models. Studies to perform genetic deletion of Tspo in animal models have long been unsuccessful, which led to the conclusions that the deletion was deleterious and the gene essential to life. During the last decades, thanks to the significant technical advances allowing genome modification, several models of animal genetically modified for TSPO have been developed. These models have modified our view regarding TSPO and profoundly improved our fundamental knowledge on this protein. However, to date, they did not allow to elucidate the precise molecular function of TSPO and numerous questions persist concerning the physiological role of TSPO and its future as a therapeutic target. This article chronologically reviews the development of deletion and induction models of TSPO.
Collapse
Affiliation(s)
- Juliette Bréhat
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Leeyah Issop
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Didier Morin
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| |
Collapse
|
2
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18 kDa. J Neurochem 2024; 168:1374-1401. [PMID: 38482552 DOI: 10.1111/jnc.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/26/2024]
Abstract
The mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. Relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed extracellular metabolic flux analyses. We found that TSPO deficiency reduced basal cellular respiration and attenuated the bioenergetic response to glucopenia. Fatty acid oxidation was increased, and lactate production was reduced in TSPO-/- MPAs and U373 cells. Co-immunoprecipitation studies revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a in U373 and MPAs, presenting a mechanism wherein TSPO may regulate FAO in these cells. Compared to TSPO+/+ cells, in TSPO-/- MPAs we observed attenuated tumor necrosis factor release following 3 h lipopolysaccharide (LPS) stimulation, which was enhanced at 24 h post-LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility, TSPO deficiency does not appear to modulate the metabolic response of MPAs to inflammation, at least in response to the model used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate L J Ellacott
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|