1
|
Haddad HK, Mercado-Reyes JI, Mustafá ER, D’Souza SP, Chung CS, Nestor RRM, Olinski LE, Martinez Damonte V, Saskin J, Vemaraju S, Raingo J, Kauer JA, Lang RA, Oancea E. Hypothalamic opsin 3 suppresses MC4R signaling and potentiates Kir7.1 to promote food consumption. Proc Natl Acad Sci U S A 2025; 122:e2403891122. [PMID: 39951488 PMCID: PMC11874419 DOI: 10.1073/pnas.2403891122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
Mammalian opsin 3 (OPN3) is a member of the opsin family of G-protein-coupled receptors with ambiguous light sensitivity. OPN3 was first identified in the brain (and named encephalopsin) and subsequently found to be expressed in other tissues. In adipocytes, OPN3 is necessary for light responses that modulate lipolysis and glucose uptake, while OPN3 in human skin melanocytes regulates pigmentation in a light-independent manner. Despite its initial discovery in the brain, OPN3 functional mechanisms in the brain remain elusive. Here, we investigated the molecular mechanism of OPN3 function in the paraventricular nucleus (PVN) of the hypothalamus. We show that Opn3 is coexpressed with the melanocortin 4 receptor (Mc4r) in a population of PVN neurons, where it negatively regulates MC4R-mediated cAMP signaling in a specific and Gαi/o-dependent manner. Under baseline conditions, OPN3 via Gαi/o potentiates the activity of the inward rectifying Kir7.1 channel, previously shown to be closed in response to agonist-mediated activation of MC4R in a Gαs-independent manner. In mice, we found that Opn3 in Mc4r-expressing neurons regulates food consumption. Our results reveal the first mechanistic insight into OPN3 function in the hypothalamus, uncovering a unique mechanism by which OPN3 functions to potentiate Kir7.1 activity and negatively regulate MC4R-mediated cAMP signaling, thereby promoting food intake.
Collapse
Affiliation(s)
- Hala K. Haddad
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Jonathan I. Mercado-Reyes
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - E. Román Mustafá
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - C. Sean Chung
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Ramses R. M. Nestor
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Lauren E. Olinski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua Saskin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Jesica Raingo
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH45229
| | - Elena Oancea
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| |
Collapse
|
2
|
Dyer B, Yu SO, Brown RL, Lang RA, D'Souza SP. Defining spatial nonuniformities of all ipRGC types using an improved Opn4 cre recombinase mouse line. CELL REPORTS METHODS 2024; 4:100837. [PMID: 39127043 PMCID: PMC11384080 DOI: 10.1016/j.crmeth.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in several physiological light responses. In this study, we generate an improved Opn4cre knockin allele (Opn4cre(DSO)), which faithfully reproduces endogenous Opn4 expression and improves compatibility with widely used reporters. We evaluated the efficacy and sensitivity of Opn4cre(DSO) for labeling in retina and brain and provide an in-depth comparison with the extensively utilized Opn4cre(Saha) line. Through this characterization, Opn4cre(DSO) demonstrated higher specificity in labeling ipRGCs with minimal recombination escape. Leveraging a combination of electrophysiological, molecular, and morphological analyses, we confirmed its sensitivity in detecting all ipRGC types (M1-M6) and defined their unique topographical distribution across the retina. In the brain, the Opn4cre(DSO) line labels ipRGC projections with minimal labeling of cell bodies. Overall, the Opn4cre(DSO) mouse line represents an improved tool for studying ipRGC function and distribution, offering a means to selectively target these cells to study light-regulated behaviors and physiology.
Collapse
Affiliation(s)
- Brannen Dyer
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sue O Yu
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - R Lane Brown
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Dyer B, Yu SO, Lane Brown R, Lang RA, D’Souza SP. A new Opn4cre recombinase mouse line to target intrinsically photosensitive retinal ganglion cells (ipRGCs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589750. [PMID: 38659888 PMCID: PMC11042346 DOI: 10.1101/2024.04.16.589750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in several physiological light responses. In this study we generate a new Opn4cre knock-in allele (Opn4cre(DSO)), in which cre is placed immediately downstream of the Opn4 start codon. This approach aims to faithfully reproduce endogenous Opn4 expression and improve compatibility with widely used reporters. We evaluated the efficacy and sensitivity of Opn4cre(DSO) for labeling in retina and brain, and provide an in-depth comparison with the extensively utilized Opn4cre(Saha) line. Through this characterization, Opn4cre(DSO) demonstrated higher specificity in labeling ipRGCs, with minimal recombination escape. Leveraging a combination of electrophysiological, molecular, and morphological analyses, we confirmed its sensitivity in detecting all ipRGC types (M1-M6). Using this new tool, we describe the topographical distributions of ipRGC types across the retinal landscape, uncovering distinct ventronasal biases for M5 and M6 types, setting them apart from their M1-M4 counterparts. In the brain, we find vastly different labeling patterns between lines, with Opn4cre(DSO) only labeling ipRGC axonal projections to their targets. The combination of off-target effects of Opn4cre(Saha) across the retina and brain, coupled with diminished efficiencies of both Cre lines when coupled to less sensitive reporters, underscores the need for careful consideration in experimental design and validation with any Opn4cre driver. Overall, the Opn4cre(DSO) mouse line represents an improved tool for studying ipRGC function and distribution, offering a means to selectively target these cells to study light-regulated behaviors and physiology.
Collapse
Affiliation(s)
- Brannen Dyer
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, OH
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, OH
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Sue O. Yu
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA
| | - R. Lane Brown
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, OH
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, OH
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, OH
- Department of Ophthalmology, University of Cincinnati, OH
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, OH
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, OH
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, OH
| |
Collapse
|