1
|
Casselini CM, Parson HK, Frizzi KE, Marquez A, Smith DR, Guernsey L, Nemmani R, Tayarani A, Jolivalt CG, Weaver J, Fernyhough P, Vinik AI, Calcutt NA. A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin. Acta Neuropathol 2024; 147:60. [PMID: 38526612 DOI: 10.1007/s00401-024-02710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024]
Abstract
Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.
Collapse
Affiliation(s)
- Carolina M Casselini
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Henri K Parson
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Katie E Frizzi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Alex Marquez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, MB, R2H 2A6, Canada
| | - Lucie Guernsey
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Rakesh Nemmani
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Alireza Tayarani
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Corinne G Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jessica Weaver
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, MB, R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Aaron I Vinik
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Kaur M, Misra S, Swarnkar P, Patel P, Das Kurmi B, Das Gupta G, Singh A. Understanding the role of hyperglycemia and the molecular mechanism associated with diabetic neuropathy and possible therapeutic strategies. Biochem Pharmacol 2023; 215:115723. [PMID: 37536473 DOI: 10.1016/j.bcp.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Diabetic neuropathy is a neuro-degenerative disorder that encompasses numerous factors that impact peripheral nerves in the context of diabetes mellitus (DM). Diabetic peripheral neuropathy (DPN) is very prevalent and impacts 50% of diabetic patients. DPN is a length-dependent peripheral nerve lesion that primarily causes distal sensory loss, discomfort, and foot ulceration that may lead to amputation. The pathophysiology is yet to be fully understood, but current literature on the pathophysiology of DPN revolves around understanding various signaling cascades involving the polyol, hexosamine, protein-kinase C, AGE, oxidative stress, and poly (ADP ribose) polymerase pathways. The results of research have suggested that hyperglycemia target Schwann cells and in severe cases, demyelination resulting in central and peripheral sensitization is evident in diabetic patients. Various diagnostic approaches are available, but detection at an early stage remains a challenge. Traditional analgesics and opioids that can be used "as required" have not been the mainstay of treatment thus far. Instead, anticonvulsants and antidepressants that must be taken routinely over time have been the most common treatments. For now, prolonging life and preserving the quality of life are the ultimate goals of diabetes treatment. Furthermore, the rising prevalence of DPN has substantial consequences for occupational therapy because such therapy is necessary for supporting wellness, warding off other chronic-diseases, and avoiding the development of a disability; this is accomplished by engaging in fulfilling activities like yoga, meditation, and physical exercise. Therefore, occupational therapy, along with palliative therapy, may prove to be crucial in halting the onset of neuropathic-symptoms and in lessening those symptoms once they have occurred.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Priyanka Swarnkar
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India.
| |
Collapse
|
4
|
Ismail CAN. Issues and challenges in diabetic neuropathy management: A narrative review. World J Diabetes 2023; 14:741-757. [PMID: 37383599 PMCID: PMC10294062 DOI: 10.4239/wjd.v14.i6.741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 04/11/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetic neuropathy (DN) is a devastating disorder with an increasing prevalence globally. This epidemic can pose a critical burden on individuals and com-munities, subsequently affecting the productivity and economic output of a country. With more people living a sedentary lifestyle, the incidence of DN is escalating worldwide. Many researchers have relentlessly worked on ways to combat this devastating disease. Their efforts have given rise to a number of commercially available therapies that can alleviate the symptoms of DN. Unfortunately, most of these therapies are only partially effective. Worse still, some are associated with unfavorable side effects. This narrative review aims to highlight current issues and challenges in the management of DN, especially from the perspective of molecular mechanisms that lead to its progression, with the hope of providing future direction in the management of DN. To improve the approaches to diabetic management, the suggested resolutions in the literature are also discussed in this review. This review will provide an in-depth understanding of the causative mechanisms of DN, apart from the insights to improve the quality and strategic approaches to DN management.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, University Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
5
|
Poitras T, Zochodne DW. Unleashing Intrinsic Growth Pathways in Regenerating Peripheral Neurons. Int J Mol Sci 2022; 23:13566. [PMID: 36362354 PMCID: PMC9654452 DOI: 10.3390/ijms232113566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Common mechanisms of peripheral axon regeneration are recruited following diverse forms of damage to peripheral nerve axons. Whether the injury is traumatic or disease related neuropathy, reconnection of axons to their targets is required to restore function. Supporting peripheral axon regrowth, while not yet available in clinics, might be accomplished from several directions focusing on one or more of the complex stages of regrowth. Direct axon support, with follow on participation of supporting Schwann cells is one approach, emphasized in this review. However alternative approaches might include direct support of Schwann cells that instruct axons to regrow, manipulation of the inflammatory milieu to prevent ongoing bystander axon damage, or use of inflammatory cytokines as growth factors. Axons may be supported by a growing list of growth factors, extending well beyond the classical neurotrophin family. The understanding of growth factor roles continues to expand but their impact experimentally and in humans has faced serious limitations. The downstream signaling pathways that impact neuron growth have been exploited less frequently in regeneration models and rarely in human work, despite their promise and potency. Here we review the major regenerative signaling cascades that are known to influence adult peripheral axon regeneration. Within these pathways there are major checkpoints or roadblocks that normally check unwanted growth, but are an impediment to robust growth after injury. Several molecular roadblocks, overlapping with tumour suppressor systems in oncology, operate at the level of the perikarya. They have impacts on overall neuron plasticity and growth. A second approach targets proteins that largely operate at growth cones. Addressing both sites might offer synergistic benefits to regrowing neurons. This review emphasizes intrinsic aspects of adult peripheral axon regeneration, emphasizing several molecular barriers to regrowth that have been studied in our laboratory.
Collapse
Affiliation(s)
| | - Douglas W. Zochodne
- Neuroscience and Mental Health Institute, Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
6
|
Miyashita A, Kobayashi M, Ishibashi S, Nagata T, Chandrasekhar A, Zochodne DW, Yokota T. The Role of Long Noncoding RNA MALAT1 in Diabetic Polyneuropathy and the Impact of Its Silencing in the Dorsal Root Ganglion by a DNA/RNA Heteroduplex Oligonucleotide. Diabetes 2022; 71:1299-1312. [PMID: 35276003 DOI: 10.2337/db21-0918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Diabetic polyneuropathy (DPN) is the most common complication of diabetes, yet its pathophysiology has not been established. Accumulating evidence suggests that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays pivotal roles in the regulation of cell growth and survival during diabetic complications. This study aimed to investigate the impact of MALAT1 silencing in dorsal root ganglion (DRG) sensory neurons, using an α-tocopherol-conjugated DNA/RNA heteroduplex oligonucleotide (Toc-HDO), on the peripheral nervous system of diabetic mice. We identified MALAT1 upregulation in the DRG of chronic diabetic mice that suggested either a pathological change or one that might be protective, and systemic intravenous injection of Toc-HDO effectively inhibited its gene expression. However, we unexpectedly noted that this intervention paradoxically exacerbated disease with increased thermal and mechanical nociceptive thresholds, indicating further sensory loss, greater sciatic-tibial nerve conduction slowing, and additional declines of intraepidermal nerve fiber density in the hind paw footpads. Serine/arginine-rich splicing factors, which are involved in pre-mRNA splicing by interacting with MALAT1, reside in nuclear speckles in wild-type and diabetic DRG neurons; MALAT1 silencing was associated with their disruption. The findings provide evidence for an important role that MALAT1 plays in DPN, suggesting neuroprotection and regulation of pre-mRNA splicing in nuclear speckles. This is also the first example in which a systemically delivered nucleotide therapy had a direct impact on DRG diabetic neurons and their axons.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ambika Chandrasekhar
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Identification and quantification of nociceptive Schwann cells in mice with and without Streptozotocin-induced diabetes. J Chem Neuroanat 2022; 123:102118. [DOI: 10.1016/j.jchemneu.2022.102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022]
|
8
|
Hagen KM, Ousman SS. Aging and the immune response in diabetic peripheral neuropathy. J Neuroimmunol 2021; 355:577574. [PMID: 33894676 DOI: 10.1016/j.jneuroim.2021.577574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
A large proportion of older individuals with diabetes go on to develop diabetic peripheral neuropathy (DPN). DPN is associated with an increase in inflammatory cells within the peripheral nerve, activation of nuclear factor kappa-light-chain-enhancer of activated B cells and receptors for advanced glycation end products/advanced glycation end products pathways, aberrant cytokine expression, oxidative stress, ischemia, as well as pro-inflammatory changes in the bone marrow; all processes that may be exacerbated with age. We review the immunological features of DPN and discuss whether age-related changes in relevant immunological areas may contribute to age being a risk factor for DPN.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
9
|
Felicetti G, Thoumie P, Do MC, Schieppati M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J Peripher Nerv Syst 2021; 26:17-34. [PMID: 33426723 DOI: 10.1111/jns.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.
Collapse
Affiliation(s)
- Guido Felicetti
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Neuromotor Rehabilitation, Institute of Montescano, Pavia, Italy
| | - Philippe Thoumie
- Service de rééducation neuro-orthopédique, Hôpital Rothschild APHP, Université Sorbonne, Paris, France.,Agathe Lab ERL Inserm U-1150, Paris, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France.,Université d'Orléans, CIAMS, Orléans, France
| | | |
Collapse
|