1
|
Ferri A, Costa PM, Simonini R. Secretory Cells in Halla parthenopeia (Oenonidae): Potential Implications for the Feeding and Defence Strategies of a Carnivorous Burrowing Polychaete. J Morphol 2024; 285:e21781. [PMID: 39385446 DOI: 10.1002/jmor.21781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Carnivorous polychaetes are known to bear diversified and often unique anatomical and behavioural adaptations for predation and defence. Halla parthenopeia, a species known to be a specialized predator of clams, thrives in the soft bottoms of the Mediterranean Sea, holding potential for polyculture and biotechnology due to the secretion of bioactive compounds. Our objective was to provide a comprehensive description of H. parthenopeia's anatomy and microanatomy, shedding light on the relation between morphology and habitat, chemical defences, and feeding behaviour. The pharynx, housing maxillae and mandibles connected to an extensive mucus gland, occupies a considerable portion of the worm's length, reaching beyond the oesophagus. This unique gland is responsible for secreting the feeding mucus, which immobilizes and aids in the digestion of clams probably acting as a vehicle of bioactive compounds synthesized by specialized serous cells in the mouth. Moreover, H. parthenopeia combines behavioural tactics, such as burrowing, and anatomical defences to evade predators. Examination of its epidermis revealed a thick cuticle layer and abundant mucocytes secreting locomotion mucus, both of which save the worm from mechanical harm during movement. When it is preyed upon, the worm can release a substantial amount of Hallachrome, a toxic anthraquinone produced by specific cells in its distal region. This pigment, with its known antimicrobial properties, likely acts as a chemical shield in case of injury. The results suggest that the ability of H. parthenopeia to prey on bivalves and to provide mechanical protection plus defence against pathogens rely on its ability to secrete distinct types of mucus. The interplay between highly specialized microanatomical features and complex behaviours underscores its adaptation as a predator in marine benthic environments.
Collapse
Affiliation(s)
- Anita Ferri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Modena, Italy
| | - Pedro M Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Roberto Simonini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Modena, Italy
| |
Collapse
|
2
|
Rodrigo AP, Moutinho Cabral I, Alexandre A, Costa PM. Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives. Animals (Basel) 2024; 14:635. [PMID: 38396603 PMCID: PMC10885894 DOI: 10.3390/ani14040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Proteinaceous toxins are peptides or proteins that hold great biotechnological value, evidenced by their ecological role, whether as defense or predation mechanisms. Bioprospecting using bioinformatics and omics may render screening for novel bioactives more expeditious, especially considering the immense diversity of toxin-secreting marine organisms. Eulalia sp. (Annelida: Phyllodocidae), a toxin bearing marine annelid, was recently shown to secrete cysteine-rich protein (Crisp) toxins (hitherto referred to as 'phyllotoxins') that can immobilize its prey. By analyzing and validating transcriptomic data, we narrowed the list of isolated full coding sequences of transcripts of the most abundant toxins or accompanying bioactives secreted by the species (the phyllotoxin Crisp, hyaluronidase, serine protease, and peptidases M12A, M13, and M12B). Through homology matching with human proteins, the biotechnological potential of the marine annelid's toxins and related proteins was tentatively associated with coagulative and anti-inflammatory responses for the peptidases PepM12A, SePr, PepM12B, and PepM13, and with the neurotoxic activity of Crisp, and finally, hyaluronidase was inferred to bear properties of an permeabilizing agent. The in silico analysis succeeded by validation by PCR and Sanger sequencing enabled us to retrieve cDNAs can may be used for the heterologous expression of these toxins.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês Moutinho Cabral
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - António Alexandre
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Pedro M. Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Gonçalves C, Alves de Matos AP, Costa PM. Comparative analysis of the jaw apparatus of three marine annelids using scanning electron microscopy: Microstructure and elemental composition. J Anat 2023; 243:786-795. [PMID: 37278211 PMCID: PMC10557390 DOI: 10.1111/joa.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Polychaeta are highly diversified invertebrates that inhabit marine, brackish or freshwater environments. They have acquired a unique range of adaptative features for securing food. However, the jaw apparatus may reveal not only defence and predation mechanisms, but also its relation to environmental chemistry. The present work compared the structure and chemical profile of the jaws of different estuarine Polychaeta: Nephtys hombergii (Nephtyidae), Hediste diversicolor (Nereididae) and Glycera alba (Glyceridae) using Scanning Electron Microscopy (SEM) and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX). Analyses revealed that N. hombergii possesses a muscular jawless proboscis with terminal sensorial papillae for detecting prey, whereas the G. alba proboscis exhibits four delicately sharp jaws with perforations for venom delivery and H. diversicolor bears two blunt denticulated jaws to grasp a wide variety of food items. Melanin and metals like copper provide hardness to the slender jaws of Glycera, while, in the absence of heavier metallic elements, halogens contribute to H. diversicolor jaws robustness. The more specific chemistry of the jaws of glycerids is associated with its more refined venom injection, whereas Hediste is an opportunistic omnivore and Nepthys an agile forager. Altogether, the chemistry of jaws is an adaptive feature for feeding, locomotion and even resilience to complex and often adverse chemical profiles of estuaries.
Collapse
Affiliation(s)
- Cátia Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - António P Alves de Matos
- Egas Moniz Center for Interdisciplinary Research (CIIEM), Egas Moniz School of Health & Science, Caparica, Portugal
| | - Pedro M Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
4
|
Rodrigo AP, Lopes A, Pereira R, Anjo SI, Manadas B, Grosso AR, Baptista PV, Fernandes AR, Costa PM. Endogenous Fluorescent Proteins in the Mucus of an Intertidal Polychaeta: Clues for Biotechnology. Mar Drugs 2022; 20:md20040224. [PMID: 35447897 PMCID: PMC9028460 DOI: 10.3390/md20040224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue–greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: (A.P.R.); (P.M.C.); Tel.: +351-212-948-300 (A.P.R. & P.M.C.)
| | - Ana Lopes
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
| | - Ricardo Pereira
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
| | - Sandra I. Anjo
- Center for Neuroscience and Cell Biology, University of Coimbra, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; (S.I.A.); (B.M.)
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology, University of Coimbra, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; (S.I.A.); (B.M.)
| | - Ana R. Grosso
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro M. Costa
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (A.L.); (R.P.); (A.R.G.); (P.V.B.); (A.R.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: (A.P.R.); (P.M.C.); Tel.: +351-212-948-300 (A.P.R. & P.M.C.)
| |
Collapse
|
5
|
A Transcriptomic Approach to the Metabolism of Tetrapyrrolic Photosensitizers in a Marine Annelid. Molecules 2021; 26:molecules26133924. [PMID: 34198975 PMCID: PMC8271901 DOI: 10.3390/molecules26133924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The past decade has seen growing interest in marine natural pigments for biotechnological applications. One of the most abundant classes of biological pigments is the tetrapyrroles, which are prized targets due their photodynamic properties; porphyrins are the best known examples of this group. Many animal porphyrinoids and other tetrapyrroles are produced through heme metabolic pathways, the best known of which are the bile pigments biliverdin and bilirubin. Eulalia is a marine Polychaeta characterized by its bright green coloration resulting from a remarkably wide range of greenish and yellowish tetrapyrroles, some of which have promising photodynamic properties. The present study combined metabolomics based on HPLC-DAD with RNA-seq transcriptomics to investigate the molecular pathways of porphyrinoid metabolism by comparing the worm’s proboscis and epidermis, which display distinct pigmentation patterns. The results showed that pigments are endogenous and seemingly heme-derived. The worm possesses homologs in both organs for genes encoding enzymes involved in heme metabolism such as ALAD, FECH, UROS, and PPOX. However, the findings also indicate that variants of the canonical enzymes of the heme biosynthesis pathway can be species- and organ-specific. These differences between molecular networks contribute to explain not only the differential pigmentation patterns between organs, but also the worm’s variety of novel endogenous tetrapyrrolic compounds.
Collapse
|
6
|
Rodrigo AP, Grosso AR, Baptista PV, Fernandes AR, Costa PM. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid. Toxins (Basel) 2021; 13:toxins13020097. [PMID: 33525375 PMCID: PMC7911839 DOI: 10.3390/toxins13020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ("phyllotoxins") were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.
Collapse
|
7
|
Rodrigo AP, Mendes VM, Manadas B, Grosso AR, Alves de Matos AP, Baptista PV, Costa PM, Fernandes AR. Specific Antiproliferative Properties of Proteinaceous Toxin Secretions from the Marine Annelid Eulalia sp. onto Ovarian Cancer Cells. Mar Drugs 2021; 19:31. [PMID: 33445445 PMCID: PMC7827603 DOI: 10.3390/md19010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
As Yondelis joins the ranks of approved anti-cancer drugs, the benefit from exploring the oceans' biodiversity becomes clear. From marine toxins, relevant bioproducts can be obtained due to their potential to interfere with specific pathways. We explored the cytotoxicity of toxin-bearing secretions of the polychaete Eulalia onto a battery of normal and cancer human cell lines and discovered that the cocktail of proteins is more toxic towards an ovarian cancer cell line (A2780). The secretions' main proteins were identified by proteomics and transcriptomics: 14-3-3 protein, Hsp70, Rab3, Arylsulfatase B and serine protease, the latter two being known toxins. This mixture of toxins induces cell-cycle arrest at G2/M phase after 3h exposure in A2780 cells and extrinsic programmed cell death. These findings indicate that partial re-activation of the G2/M checkpoint, which is inactivated in many cancer cells, can be partly reversed by the toxic mixture. Protein-protein interaction networks partake in two cytotoxic effects: cell-cycle arrest with a link to RAB3C and RAF1; and lytic activity of arylsulfatases. The discovery of both mechanisms indicates that venomous mixtures may affect proliferating cells in a specific manner, highlighting the cocktails' potential in the fine-tuning of anti-cancer therapeutics targeting cell cycle and protein homeostasis.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Vera M. Mendes
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Bruno Manadas
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Ana R. Grosso
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - António P. Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte de Caparica, 2829-516 Caparica, Portugal;
| | - Pedro V. Baptista
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Pedro M. Costa
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Alexandra R. Fernandes
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| |
Collapse
|
8
|
Histochemical detection of free thiols in glandular cells and tissues of different marine Polychaeta. Histochem Cell Biol 2020; 154:315-325. [PMID: 32507976 DOI: 10.1007/s00418-020-01889-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Either through differentiated glands or specialised individual cells, the coating epithelia of soft-bodied marine invertebrates are responsible for the secretion of a broad span of peptidic substances, from protective mucins to biocides. These secretions are characterised by the presence of cysteine-rich proteins and peptides, rendering a distinct histochemical signature of secretory epithelia. Through a histochemical procedure for fluorescence microscopy in paraffin sections, we performed a comparative assessment of the distribution of thiol-rich compounds in multiple epithelia of different species of intertidal Polychaeta, which revealed distinctive patterns of distribution that closely relate to ecology, morphoanatomy and physiology. The presence of free thiols was notorious in mucocytes and enzyme-plus toxin-secreting cells. Consequently, strong signals were recorded in the mucocytes of the parapodia of Nereis splendida, the epidermis and pharynx epithelium of Mysta picta and the venom glands of Glycera alba. The findings show an investment in mucus secretion in foragers such as Nereis and Mysta, especially the latter, which is not a native burrower, as a protective response and as lubricant for locomotion. Additionally, nereidids are believed to secret integumentary toxins for defence. On the other hand, Glycera is an ambush predatorial burrower whose behaviour entirely revolves around the delivery of venom making use of its four jaws. The results showed that the detection of thiol-rich compounds in histological sections can be a tool to identify potential toxin secretion and delivery structures, with important consequences for the bioprospecting of novel bioreactives from marine invertebrates for the purpose of drug discovery.
Collapse
|
9
|
Light-Mediated Toxicity of Porphyrin-Like Pigments from a Marine Polychaeta. Mar Drugs 2020; 18:md18060302. [PMID: 32517206 PMCID: PMC7344449 DOI: 10.3390/md18060302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023] Open
Abstract
Porphyrins and derivatives form one of the most abundant classes of biochromes. They result from the breakdown of heme and have crucial physiological functions. Bilins are well-known representatives of this group that, besides significant antioxidant and anti-mutagenic properties, are also photosensitizers for photodynamic therapies. Recently, we demonstrated that the Polychaeta Eulalia viridis, common in the Portuguese rocky intertidal, holds a high variety of novel greenish and yellowish porphyrinoid pigments, stored as granules in the chromocytes of several organs. On the follow-up of this study, we chemically characterized pigment extracts from the worm’s skin and proboscis using HPLC and evaluated their light and dark toxicity in vivo and ex vivo using Daphnia and mussel gill tissue as models, respectively. The findings showed that the skin and proboscis have distinct patterns of hydrophilic or even amphiphilic porphyrinoids, with some substances in common. The combination of the two bioassays demonstrated that the extracts from the skin exert higher dark toxicity, whereas those from the proboscis rapidly exert light toxicity, then becoming exhausted. One particular yellow pigment that is highly abundant in the proboscis shows highly promising properties as a natural photosensitizer, revealing that porphyrinoids from marine invertebrates are important sources of these high-prized bioproducts.
Collapse
|
10
|
Soliman SA. Morphological and Histochemical Description of Quail Feather Development. Anat Rec (Hoboken) 2019; 303:1865-1883. [DOI: 10.1002/ar.24276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
|
11
|
The complexity of porphyrin-like pigments in a marine annelid sheds new light on haem metabolism in aquatic invertebrates. Sci Rep 2019; 9:12930. [PMID: 31506557 PMCID: PMC6736840 DOI: 10.1038/s41598-019-49433-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 11/08/2022] Open
Abstract
True green pigments in the animal kingdom are scarce and are almost invariably porphyrinoids. Endogenous porphyrins resulting from the breakdown of haem are usually known as “bile pigments”. The pigmentation of intertidal Polychaeta has long gained attention due to its variety and vivid patterning that often seems incompatible with camouflage, as it occurs with Eulalia viridis, one of the few truly green Polychaeta. The present study combined UV and bright-field microscopy with HPLC to address the presence and distribution of pigments in several organs. The results showed two major types of porphyrin-like pigments, yellowish and greenish in colour, that are chiefly stored as intraplasmatic granules. Whereas the proboscis holds yellow pigments, the skin harbours both types in highly specialised cells. In their turn, oocytes and intestine have mostly green pigments. Despite some inter-individual variation, the pigments tend to be stable after prolonged storage at −20 °C, which has important implications for future studies. The results show that, in a foraging predator of the intertidal where melanins are circumscribed to lining the nervous system, porphyrinoid pigments have a key role in protection against UV light, in sensing and even as chemical defence against foulants and predators, which represents a remarkable adaptive feature.
Collapse
|
12
|
Rodrigo AP, Costa PM. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study. ENVIRONMENTAL RESEARCH 2019; 173:270-280. [PMID: 30928858 DOI: 10.1016/j.envres.2019.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Marine biotechnology is under the spotlight, as researchers and industrialists become aware that bioprospecting through the oceans' vast biodiversity can replace the painstaking process of designing synthetic compounds. Millions of years of Natural Selection provided an almost inexhaustible source of marine products that can interfere with specific bioprocesses while being cost-effective, safer and more environmentally friendly. Still, the number of commercial applications of marine compounds, especially from eumetazoans, can seem disappointing. In most part, this results from the challenges of dealing with an immense biodiversity and with poorly known organisms with uncanny physiology. Consequently, shifting the current perspective from descriptive science to actually proposing applications can be a major incentive to industry. With this in mind, the present review focuses on one of the least studied but most representative group of marine animals: the Polychaeta annelids. Occupying nearly every marine habitat, from the deep sea to the intertidal, they can offer a wide array of natural products that are just beginning to be understood, showing properties compatible with anaesthetics, fluorescent probes, and even antibiotics and pesticides, for instance. Altogether, they are a showcase for the ocean's real biotechnological deterrent, albeit our still wispy knowledge on this vast and ancient environment.
Collapse
Affiliation(s)
- Ana P Rodrigo
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Pedro M Costa
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|