1
|
Isola M, Maxia C, Murtas D, Ekström J, Isola R, Loy F. Prostate-specific antigen: An unfamiliar protein in the human salivary glands. J Anat 2024; 244:873-881. [PMID: 38111134 PMCID: PMC11021670 DOI: 10.1111/joa.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVES The presence of prostate-specific antigen (PSA) in saliva and salivary glands has been reported. Nevertheless, its release pathway in these glands remains to be elucidated. Here, we showed PSA subcellular distribution focusing on its plausible route in human salivary parenchyma. MATERIALS AND METHODS Sections of parotid and submandibular glands were subjected to the immunohistochemical demonstration of PSA by the streptavidin-biotin method revealed by alkaline phosphatase. Moreover, ultrathin sections were collected on nickel grids and processed for immunocytochemical analysis, to visualize the intracellular distribution pattern of PSA through the observation by transmission electron microscopy. RESULTS By immunohistochemistry, in both parotid and submandibular glands PSA expression was detected in serous secretory acini and striated ducts. By immunocytochemistry, immunoreactivity was retrieved in the cytoplasmic compartment of acinar and ductal cells, often associated with small cytoplasmic vesicles. PSA labeling appeared also on rough endoplasmic reticulum and in the acini's lumen. A negligible PSA labeling appeared in most of the secretory granules of both glands. CONCLUSIONS Our findings clearly support that human parotid and submandibular glands are involved in PSA secretion. Moreover, based on the immunoreactivity pattern, its release in oral cavity would probably occur by minor regulated secretory or constitutive-like secretory pathways.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Cristina Maxia
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Daniela Murtas
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Jörgen Ekström
- Division of Pharmacology, Institute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgGöteborgSweden
| | - Raffaella Isola
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| |
Collapse
|
2
|
Cocco C, Manca E, Corda G, Angioni MM, Noli B, Congia M, Loy F, Isola M, Chessa E, Floris A, Lorefice L, Saba L, Mathieu A, Ferri GL, Cauli A, Piga M. Brain-reactive autoantibodies in neuropsychiatric systemic lupus erythematosus. Front Immunol 2023; 14:1157149. [PMID: 37383228 PMCID: PMC10294074 DOI: 10.3389/fimmu.2023.1157149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) is widely unknown, and the role of autoantibodies is still undetermined. Methods To identify brain-reactive autoantibodies possibly related to NPSLE, immunofluorescence (IF) and transmission electron microscopy (TEM) on rat and human brains were performed. ELISA was used to reveal the presence of known circulating autoantibodies, while western blot (WB) was applied to characterize potential unknown autoantigen(s). Results We enrolled 209 subjects, including patients affected by SLE (n=69), NPSLE (n=36), Multiple Sclerosis (MS, n=22), and 82 age- and gender-matched healthy donors (HD). Autoantibody reactivity by IF was observed in almost the entire rat brain (cortex, hippocampus, and cerebellum) using sera from NPSLE and SLE patients and was virtually negative in MS and HD. NPSLE showed higher prevalence (OR 2.4; p = 0.047), intensity, and titer of brain-reactive autoantibodies than SLE patients. Most of the patient sera with brain-reactive autoantibodies (75%) also stained human brains. Double staining experiments on rat brains mixing patients' sera with antibodies directed against neuronal (NeuN) or glial markers showed autoantibody reactivity restricted to NeuN-containing neurons. Using TEM, the targets of brain-reactive autoantibodies were located in the nuclei and, to a lesser extent, in the cytoplasm and mitochondria. Given the high degree of colocalization between NeuN and brain-reactive autoantibodies, we assumed NeuN was a possible autoantigen. However, WB analysis with HEK293T cell lysates expressing or not expressing the gene encoding for NeuN protein (RIBFOX3) showed that patients' sera carrying brain-reactive autoantibodies did not recognize the NeuN corresponding band size. Among the panel of NPSLE-associated autoantibodies (e.g., anti-NR2, anti-P-ribosomal protein, antiphospholipid) investigated by ELISA assay, only the anti-β2-glycoprotein-I (aβ2GPI) IgG was exclusively found in those sera containing brain-reactive autoantibodies. Conclusion In conclusion, SLE and NPSLE patients possess brain-reactive autoantibodies but with higher frequency and titers found in NPSLE patients. Although many target antigens of brain-reactive autoantibodies are still undetermined, they likely include β2GPI.
Collapse
Affiliation(s)
- Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giulia Corda
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Maddalena Angioni
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Mattia Congia
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Alberto Floris
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
- Radiology Department, University Clinic, AOU Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Alberto Cauli
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public health, University of Cagliari, Monserrato, Italy
| |
Collapse
|
3
|
Dholariya S, Singh RD, Patel KA. Melatonin: Emerging Player in the Management of Oral Cancer. Crit Rev Oncog 2023; 28:77-92. [PMID: 37830217 DOI: 10.1615/critrevoncog.2023048934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has emerged as a major medical and social issue in many industrialized nations due to the high death rate. It is becoming increasingly common in people under the age of 45, although the underlying causes and mechanisms of this increase remain unclear. Melatonin, as a pleiotropic hormone, plays a pivotal role in a wide variety of cellular and physiological functions. Mounting evidence supports melatonin's ability to modify/influence oral carcinogenesis, help in the reduction of the incidence of OC, and increase chemo- and radiosensitivity. Despite its potential anti-carcinogenic effects, the precise function of melatonin in the management of OC is not well understood. This review summarizes the current knowledge regarding melatonin function in anti-carcinogenesis mechanisms for OC. In addition, clinical assessment and the potential therapeutic utility of melatonin in OC are discussed. This review will provide a basis for researchers to create new melatonin-based personalized medicines for treating and preventing OC.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | |
Collapse
|
4
|
Isola R, Lai Y, Noli R, Masala C, Isola M, Loy F. Melatonin ultrastructural localization in mitochondria of human salivary glands. J Anat 2022; 242:146-152. [PMID: 36176196 PMCID: PMC9877479 DOI: 10.1111/joa.13775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The hormone melatonin was initially believed to be synthesized exclusively by the pineal gland and the enterochromaffin cells, but nowadays its production and distribution were observed in several other tissues and organs. Among others, the ultrastructural localization of melatonin and its receptors has been reported in human salivary glands. In these glands, the fine localization of melatonin in intracellular organelles, above all in mitochondria, remains to be explored comprehensively. Bioptic samples of parotid and submandibular glands were treated to search for melatonin using the immunogold staining method by transmission electron microscopy. Morphometric analysis was applied to micrographs. The results indicated that, both in parotid and submandibular glands mitochondria, a certain melatonin positivity was present. Within glandular cells, melatonin was less retrieved in mitochondria than in secretory granules; however, its presence in this organelle was clearly evident. Inside striated duct cells, melatonin staining in mitochondria was more prominent than in glandular cells. Our data provide an ultrastructural report on the presence of melatonin in mitochondria of human major salivary glands and represent a fundamental prerequisite for a better understanding of the melatonin role in this organelle.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of CagliariCagliariItaly
| | - Ylenia Lai
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of CagliariCagliariItaly
| | - Roberta Noli
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of CagliariCagliariItaly
| | - Carla Masala
- Department of Biomedical Sciences, Section of PhysiologyUniversity of CagliariCagliariItaly
| | - Michela Isola
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of CagliariCagliariItaly
| |
Collapse
|
5
|
Loy F, Isola M, Masala C, Isola R. Reactivity of human labial glands in response to cevimeline treatment. Anat Rec (Hoboken) 2021; 304:2879-2890. [PMID: 33704905 DOI: 10.1002/ar.24617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/08/2022]
Abstract
Among the pathologies affecting the salivary glands, the Sjögren's syndrome (SS), an autoimmune disease, causes progressive destruction of the glandular tissue. The effect of SS is particularly evident on the labial glands and the morphological analysis of these minor glands is considered useful for diagnosis. Cevimeline hydrochloride (SNI), a selective muscarinic agonist drug, is one of the elective treatments for the hyposalivation due to SS, acting not only on major salivary glands, but also on labial glands since their secretion is primarily under parasympathetic control. Aim of this study is to describe the morphology of human labial glands treated with SNI by light, transmission, and high-resolution scanning electron microscopy. Moreover, a morphometric analysis was applied to the light and transmission electron microscopy micrographs to obtain data that were then compared with analogous data collected on control and carbachol-treated labial glands. Following SNI administration, the mucous tubules exhibited enlarged lumina, which were filled with a dense mucous secretion. Occasionally, small broken debris of the cells were retrieved into the lumen. In the mucous secretory cells, some mucous droplets fused to form a large vacuole-like structure. Similarly, the seromucous acini showed both dilated lumina and canaliculi. These above reported signs of secretion were confirmed through morphometric analysis and a milder action of SNI than carbachol on labial parenchyma was observed. This study confirmed that SNI also evoked secretion on labial glands and that its effect is more physiologic than that of the pan-muscarinic agonists.
Collapse
Affiliation(s)
- Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Raffaella Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
6
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
7
|
Stanciu AE, Zamfir-Chiru-Anton A, Stanciu MM, Stoian AP, Jinga V, Nitipir C, Bucur A, Pituru TS, Arsene AL, Dragoi CM, Hainarosie R, Nicolae AC, Gherghe M, Gheorghe DC, Spandidos DA, Tsatsakis A, Papasavva M, Drakoulis N. Clinical significance of serum melatonin in predicting the severity of oral squamous cell carcinoma. Oncol Lett 2019; 19:1537-1543. [PMID: 31966079 PMCID: PMC6956408 DOI: 10.3892/ol.2019.11215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Melatonin, the primary hormone produced by the pineal gland, is intensely assessed for its anticancer properties. This study aimed to reveal the clinical significance of serum melatonin levels in predicting the severity of oral squamous cell carcinoma (OSCC). For this purpose, 40 male patients with OSCC and 30 healthy subjects were enrolled in this study. The serum levels of melatonin were determined by ELISA. The results revealed that the melatonin concentrations were significantly lower in the patients with OSCC compared with the controls (18.2 vs. 47.6 pg/ml, P<0.001). In addition, the serum melatonin levels had a high predictive accuracy for discriminating patients with OSCC with T-depth of invasion (DOI) II from the healthy controls (89.1%), as well as in discriminating patients with OSCC with nodal metastasis from those without nodal metastasis (83.8%). On the whole, the findings of this study suggest that the serum melatonin concentrations are closely related to the severity of OSCC and may thus be used to assess the different stages of oral cancer objectively and accurately. The present study also supports the conclusion that melatonin may be a potential therapeutic agent for use in the treatment of patients with OSCC.
Collapse
Affiliation(s)
- Adina E Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, 022328 Bucharest, Romania
| | - Adina Zamfir-Chiru-Anton
- ENT Department, Grigore Alexandrescu Children's Emergency Hospital and Coltea Clinical Hospital, 011743 Bucharest, Romania
| | - Marcel M Stanciu
- Electrical Engineering Faculty, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Viorel Jinga
- Department of Urology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandru Bucur
- Department of Oral and Maxillo-facial Surgery, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodora S Pituru
- Department of Oral and Maxillo-facial Surgery, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andreea L Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Cristina M Dragoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Razvan Hainarosie
- ENT Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alina C Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mirela Gherghe
- Department of Radiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dan C Gheorghe
- ENT Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.,ENT Department and Maria Sklodowska Curie Children's Emergency Hospital, 077120 Bucharest, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|