1
|
Macrì S, Di-Poï N. The SmARTR pipeline: A modular workflow for the cinematic rendering of 3D scientific imaging data. iScience 2024; 27:111475. [PMID: 39720527 PMCID: PMC11667014 DOI: 10.1016/j.isci.2024.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Advancements in noninvasive surface and internal imaging techniques, along with computational methods, have revolutionized 3D visualization of organismal morphology-enhancing research, medical anatomical analysis, and facilitating the preservation and digital archiving of scientific specimens. We introduce the SmARTR pipeline (Small Animal Realistic Three-dimensional Rendering), a comprehensive workflow integrating wet lab procedures, 3D data acquisition, and processing to produce photorealistic scientific data through 3D cinematic rendering. This versatile pipeline supports multiscale visualizations-from tissue-level to whole-organism details across diverse living organisms-and is adaptable to various imaging sources. Its modular design and customizable rendering scenarios, enabled by the global illumination modeling and programming modules available in the free MeVisLab software and seamlessly integrated into detailed SmARTR networks, make it a powerful tool for 3D data analysis. Accessible to a broad audience, the SmARTR pipeline serves as a valuable resource across multiple life science research fields and for education, diagnosis, outreach, and artistic endeavors.
Collapse
Affiliation(s)
- Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Kolmann MA, Nagesan RS, Andrews JV, Borstein SR, Figueroa RT, Singer RA, Friedman M, López-Fernández H. DiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes. JOURNAL OF FISH BIOLOGY 2023; 102:893-903. [PMID: 36647819 DOI: 10.1111/jfb.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Computed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol's have provided access to an array of morphological data sets spanning extant vertebrate lineages. This contribution outlines straightforward means for applying diceCT techniques to preserved museum specimens of cartilaginous and bony fishes, collectively representing half of vertebrate species diversity. This study contrasts the benefits of using either aqueous or ethylic Lugol's solutions and reports few differences between these methods with respect to the time required to achieve optimal tissue contrast. It also explores differences in minimum stain duration required for different body sizes and shapes and provides recommendations for staining specimens individually or in small batches. As reported by earlier studies, the authors note a decrease in pH during staining with either aqueous or ethylic Lugol's. Nonetheless, they could not replicate the drastic declines in pH reported elsewhere. They provide recommendations for researchers and collections staff on how to incorporate diceCT into existing curatorial practices, while offsetting risk to specimens. Finally, they outline how diceCT with Lugol's can aid ichthyologists of all kinds in visualizing anatomical structures of interest: from brains and gizzards to gas bladders and pharyngeal jaw muscles.
Collapse
Affiliation(s)
- Matthew A Kolmann
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Ramon S Nagesan
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - James V Andrews
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel R Borstein
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodrigo Tinoco Figueroa
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Randal A Singer
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matt Friedman
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernán López-Fernández
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Kunisch S, Blüml V, Schwaha T, Beisser CJ, Handschuh S, Lemell P. Digital dissection of the head of the frogs Calyptocephalella gayi and Leptodactylus pentadactylus with emphasis on the feeding apparatus. J Anat 2021; 239:391-404. [PMID: 33713453 PMCID: PMC8273601 DOI: 10.1111/joa.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022] Open
Abstract
Micro-computed tomography (microCT) of small animals has led to a more detailed and more accurate three-dimensional (3D) view on different anatomical structures in the last years. Here, we present the cranial anatomy of two frog species providing descriptions of bone structures and soft tissues of the feeding apparatus with comments to possible relations to habitat and feeding ecology. Calyptocephalella gayi, known for its aquatic lifestyle, is not restricted to aquatic feeding but also feeds terrestrially using lingual prehension. This called for a detailed investigation of the morphology of its feeding apparatus and a comparison to a fully terrestrial species that is known to feed by lingual prehension such as Leptodactylus pentadactylus. These two frog species are of similar size, feed on similar diet but within different main habitats. MicroCT scans of both species were conducted in order to reconstruct the complete anatomical condition of the whole feeding apparatus for the first time. Differences in this regard are evident in the tongue musculature, which in L. pentadactylus is more massively built and with a broader interdigitating area of the two main muscles, the protractor musculus genioglossus and the retractor musculus hyoglossus. In contrast, the hyoid retractor (m. sternohyoideus) is more massive in the aquatic species C. gayi. Moreover, due to the different skull morphology, the origins of two of the five musculi adductores vary between the species. This study brings new insights into the relation of the anatomy of the feeding apparatus to the preferred feeding method via 3D imaging techniques. Contrary to the terrestrially feeding L. pentadactylus, the skeletal and muscular adaptations of the aquatic species C. gayi provide a clear picture of necessities prescribed by the habitat. Nevertheless, by keeping a certain amount of flexibility of the design of its feeding apparatus, C. gayi is able to employ various methods of feeding.
Collapse
Affiliation(s)
- Stephanie Kunisch
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Valentin Blüml
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Thomas Schwaha
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | | | | | - Patrick Lemell
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| |
Collapse
|
4
|
Dearden RP, Mansuit R, Cuckovic A, Herrel A, Didier D, Tafforeau P, Pradel A. The morphology and evolution of chondrichthyan cranial muscles: A digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula. J Anat 2021; 238:1082-1105. [PMID: 33415764 PMCID: PMC8053583 DOI: 10.1111/joa.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
The anatomy of sharks, rays, and chimaeras (chondrichthyans) is crucial to understanding the evolution of the cranial system in vertebrates due to their position as the sister group to bony fishes (osteichthyans). Strikingly different arrangements of the head in the two constituent chondrichthyan groups-holocephalans and elasmobranchs-have played a pivotal role in the formation of evolutionary hypotheses targeting major cranial structures such as the jaws and pharynx. However, despite the advent of digital dissections as a means of easily visualizing and sharing the results of anatomical studies in three dimensions, information on the musculoskeletal systems of the chondrichthyan head remains largely limited to traditional accounts, many of which are at least a century old. Here, we use synchrotron tomographic data to carry out a digital dissection of a holocephalan and an elasmobranch widely used as model species: the elephantfish, Callorhinchus milii, and the small-spotted catshark, Scyliorhinus canicula. We describe and figure the skeletal anatomy of the head, labial, mandibular, hyoid, and branchial cartilages in both taxa as well as the muscles of the head and pharynx. In Callorhinchus, we make several new observations regarding the branchial musculature, revealing several previously unreported or ambiguously characterized muscles, likely homologous to their counterparts in the elasmobranch pharynx. We also identify a previously unreported structure linking the pharyngohyal of Callorhinchus to the neurocranium. Finally, we review what is known about the evolution of chondrichthyan cranial muscles from their fossil record and discuss the implications for muscle homology and evolution, broadly concluding that the holocephalan pharynx is likely derived from a more elasmobranch-like form which is plesiomorphic for the chondrichthyan crown group. This dataset has great potential as a resource, particularly for researchers using these model species for zoological research, functional morphologists requiring models of musculature and skeletons, as well as for palaeontologists seeking comparative models for extinct taxa.
Collapse
Affiliation(s)
- Richard P Dearden
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| | - Rohan Mansuit
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France.,UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Anthony Herrel
- UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Dominique Didier
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Alan Pradel
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| |
Collapse
|
5
|
Baan J, De Meyer J, De Kegel B, Adriaens D. From yellow to silver: Transforming cranial morphology in European eel (Anguilla anguilla). J Anat 2020; 237:979-987. [PMID: 32579740 DOI: 10.1111/joa.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022] Open
Abstract
The European eel (Anguilla anguilla) has been extensively studied, especially because of its highly specialized migratory behaviour associated with substantial phenotypic transformations. During this migration, one of those transformations the eel undergoes is from yellow to silver eel, a process known as silvering. Although the cranial morphology during the earlier glass, elver and yellow eel stages are well studied, little is known about actual morphological changes during the transformation process from the yellow to the silver eel stage. Yet, literature suggests drastic changes in musculoskeletal anatomy. Here, we investigated the cranial musculoskeletal morphology of 11 male European eels at different stages during silvering, resulting both from natural and artificial maturation. Using 3D-reconstructed µCT data of the head, the skull and cranial muscles associated with jaw closing and respiration were studied. Eye size was used as a proxy for the silvering stage. Size-adjusted jaw muscle volumes increased during silvering, although insignificantly. Accordingly, a near-significant increase in bite force was observed. Respiratory muscles size did increase significantly during silvering, however. Considering the eel's long migration, which often includes deep and thus potentially oxygen-poor environments, having a better performing respiratory system may facilitate efficient migration. Both overall skull dimensions and specifically orbit size increased with eye index, suggesting they play a role in accommodating the enlarging eyes during silvering. Finally, artificially matured eels had a wider and taller skull, as well as larger jaw muscles than wild silver eels. This could be caused (a) by different conditions experienced during the yellow eel stage, which are maintained in the silver eel stage, (b) by side effects of hormonal injections or (c) be part of the maturation process as artificially induced silver eels had a higher eye index than the wild silver eels.
Collapse
Affiliation(s)
- Jochem Baan
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Jens De Meyer
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Barbara De Kegel
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Dominique Adriaens
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Thieme P, Moritz T. The osteology of the golden grey mullet Liza aurata (Teleostei: Mugiliformes: Mugilidae) including interactive three-dimensional reconstructions. JOURNAL OF FISH BIOLOGY 2020; 96:1320-1340. [PMID: 32112399 DOI: 10.1111/jfb.14281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Grey mullets are remarkably characterized by their overall uniform external morphology. Identifying species as well as positioning the Mugiliformes in a phylogenetic context is rather difficult. Most recently they were placed in the newly erected Ovalentaria, but more detailed relationships to potential sister taxa were not resolved. Studying the internal morphology, especially the osteology, might provide new insights into the evolution of the Mugiliformes as well as help clarify their phylogenetic position within the Ovalentaria. A detailed osteology of the golden grey mullet Liza aurata is presented. The use of cleared and stained specimens allowed for a complete examination of bony and cartilaginous structures, and a 3D reconstruction from a μCT data set provided additional information on the positional relationships of the bones. Following this, the data obtained were compared with different mugilid species, particularly with the flathead grey mullet Mugil cephalus. Several differences between these species could be identified, such as the position of the basisphenoid, the shape of the hyomandibular and the composition of the branchial arches. These characters might help in understanding the evolutionary changes happening within the mugiliforms and will provide the basis to study this taxon in detail, finally allowing the reconstruction of the body plan of grey mullets.
Collapse
Affiliation(s)
- Philipp Thieme
- Department of Science, Deutsches Meeresmuseum, Stralsund, Germany
- Institute for Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Timo Moritz
- Department of Science, Deutsches Meeresmuseum, Stralsund, Germany
- Institute for Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|