1
|
Brocklehurst RJ, Fahn-Lai L, Biewener A, Pierce SE. Relationship between joint shape and function as revealed through ex vivo XROMM. J Exp Biol 2025; 228:jeb249261. [PMID: 40181760 DOI: 10.1242/jeb.249261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Skeletal joint morphology and mobility underlie movement, behavior and ecology in vertebrates. Joints can be categorized by their shape and articulation type, but such schemes might be unreliable for inferring function across the full diversity of vertebrates. We test hypothesized relationships between joint form and function by collecting marker-based ex vivo, cadaveric XROMM data on the shoulder and elbow joints of the tegu lizard (Salvator merianae) and Virginia opossum (Didelphis virginiana), which between them contain articulations historically classified as ball-and-socket, hemi-sellar, hinge and condylar joints. We measured 3D rotational and translational mobility at each joint and compared our experimental results against predictions based on articular morphology. Contrary to our predictions, the opossum ball-and-socket shoulder joint was less mobile - it had a smaller 3D range of motion envelope - than the tegu hemi-sellar shoulder joint and even the tegu condylar elbow joint, challenging the notion that ball-and-socket joints provide an inherent mobility advantage. However, the ball-and-socket opossum shoulder also had a less complex mobility envelope, with fewer interactions between degrees of freedom, allowing it to transition between poses more easily. Matching osteological predictions, the hinge elbow of the opossum was the least mobile. All joints exhibited coupling between rotational and translational degrees of freedom, further emphasizing the need to incorporate translational motion and soft tissue constraints for accurately modeling joint mobility. Our findings underscore the complexity of form-function relationships in vertebrate skeletal joints, and demonstrate that joint morphology alone, in the absence of soft tissues, does not provide a complete picture of joint mobility.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - L Fahn-Lai
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Andrew Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Manafzadeh AR, Gatesy SM, Nyakatura JA, Bhullar BAS. Fibular reduction and the evolution of theropod locomotion. Nature 2025; 637:113-117. [PMID: 39567698 DOI: 10.1038/s41586-024-08251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Since Hampé's classic developmental experiments in the mid-twentieth century1,2, the reduced avian fibula has sparked sustained curiosity3-6. The fibula transformed throughout dinosaur evolution from a columnar structure into its splint-like avian form, a change long thought to be of little biomechanical consequence3,6. Here we integrated comparative three-dimensional kinematic analyses with transitional morphologies from the fossil record to refute this assumption and show that the reduced fibula serves a crucial function in enabling extreme knee long-axis rotation (LAR). Extreme LAR is fundamental to avian locomotion and is regularly exploited by living birds to execute complex terrestrial manoeuvres7. We infer that the evolution of this capacity was preceded by restriction of the knee to hinge-like motion in early theropod dinosaurs, driven by the origin of a mid-shank articulation8 that precluded ancestral patterns of tibiofibular motion. Freeing of the fibula from the ankle joint later enabled mobilization of this initially static articulation and, in doing so, established a novel pattern of tibiofibular kinematics essential to the extreme levels of LAR retained by modern birds. Fibular reduction thus ushered in a transition to LAR-dominated three-dimensional limb control, profoundly altering the course of theropod locomotor evolution.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT, USA.
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, New Haven, CT, USA.
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA
| | - John A Nyakatura
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, New Haven, CT, USA
| |
Collapse
|
3
|
Leavey A, Richards CT, Porro LB. Comparative muscle anatomy of the anuran pelvis and hindlimb in relation to locomotor mode. J Anat 2024; 245:751-774. [PMID: 39119773 PMCID: PMC11470798 DOI: 10.1111/joa.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Frogs have a highly conserved body plan, yet they employ a diverse array of locomotor modes, making them ideal organisms for investigating the relationships between morphology and locomotor function, in particular whether anatomical complexity is a prerequisite for functional complexity. We use diffusible iodine contrast-enhanced microCT (diceCT) imaging to digitally dissect the gross muscle anatomy of the pelvis and hindlimbs for 30 species of frogs representing five primary locomotor modes, including the first known detailed dissection for some of the world's smallest frogs, forming the largest digital comparative analysis of musculoskeletal structure in any vertebrate clade to date. By linking musculoskeletal dissections and phylogenetic comparative methods, we then quantify and compare relationships between anatomy and function across over 160 million years of anuran evolution. In summary, we have found that bone lengths and pelvic crest sizes are generally not reliable predictors of muscle sizes, which highlights important implications for future palaeontological studies. Our investigation also presents previously unreported differences in muscle anatomy between frogs specialising in different locomotor modes, including several of the smallest frog hindlimb muscles, which are extremely difficult to extract and measure using traditional approaches. Furthermore, we find evidence of many-to-one and one-to-many mapping of form to function across the phylogeny. Additionally, we perform the first quantitative analysis of how the degree of muscle separation can differ between frogs. We find evidence that phylogenetic history is the key contributing factor to muscle separation in the pelvis and thigh, while the separation of shank muscles is influenced more strongly by locomotor mode. Finally, our anatomical 3D reconstructions are published alongside this manuscript to contribute towards future research and serve as educational materials.
Collapse
Affiliation(s)
- Alice Leavey
- Centre for Integrative Anatomy, Cell and Developmental BiologyUniversity College LondonLondonUK
- Structure and Motion LaboratoryRoyal Veterinary College—Camden Campus, Comparative Biomedical SciencesLondonUK
| | - Christopher T. Richards
- Structure and Motion LaboratoryRoyal Veterinary College—Camden Campus, Comparative Biomedical SciencesLondonUK
| | - Laura B. Porro
- Centre for Integrative Anatomy, Cell and Developmental BiologyUniversity College LondonLondonUK
| |
Collapse
|
4
|
Bishop PJ, Pierce SE. Late acquisition of erect hindlimb posture and function in the forerunners of therian mammals. SCIENCE ADVANCES 2024; 10:eadr2722. [PMID: 39454012 PMCID: PMC11506245 DOI: 10.1126/sciadv.adr2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The evolutionary transition from early synapsids to therian mammals involved profound reorganization in locomotor anatomy and function, centered around a shift from "sprawled" to "erect" limb postures. When and how this functional shift was accomplished has remained difficult to decipher from the fossil record alone. Through biomechanical modeling of hindlimb force-generating performance in eight exemplar fossil synapsids, we demonstrate that the erect locomotor regime typifying modern therians did not evolve until just before crown Theria. Modeling also identifies a transient phase of increased performance in therapsids and early cynodonts, before crown mammals. Further, quantifying the global actions of major hip muscle groups indicates a protracted juxtaposition of functional redeployment and conservatism, highlighting the intricate interplay between anatomical reorganization and function across postural transitions. We infer a complex history of synapsid locomotor evolution and suggest that major evolutionary transitions between contrasting locomotor behaviors may follow highly nonlinear trajectories.
Collapse
Affiliation(s)
- Peter J. Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Demuth OE, Herbst E, Polet DT, Wiseman ALA, Hutchinson JR. Modern three-dimensional digital methods for studying locomotor biomechanics in tetrapods. J Exp Biol 2023; 226:jeb245132. [PMID: 36810943 PMCID: PMC10042237 DOI: 10.1242/jeb.245132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Here, we review the modern interface of three-dimensional (3D) empirical (e.g. motion capture) and theoretical (e.g. modelling and simulation) approaches to the study of terrestrial locomotion using appendages in tetrapod vertebrates. These tools span a spectrum from more empirical approaches such as XROMM, to potentially more intermediate approaches such as finite element analysis, to more theoretical approaches such as dynamic musculoskeletal simulations or conceptual models. These methods have much in common beyond the importance of 3D digital technologies, and are powerfully synergistic when integrated, opening a wide range of hypotheses that can be tested. We discuss the pitfalls and challenges of these 3D methods, leading to consideration of the problems and potential in their current and future usage. The tools (hardware and software) and approaches (e.g. methods for using hardware and software) in the 3D analysis of tetrapod locomotion have matured to the point where now we can use this integration to answer questions we could never have tackled 20 years ago, and apply insights gleaned from them to other fields.
Collapse
Affiliation(s)
- Oliver E. Demuth
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Eva Herbst
- Palaeontological Institute and Museum, University of Zurich, 8006 Zürich, Switzerland
| | - Delyle T. Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - Ashleigh L. A. Wiseman
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| |
Collapse
|
6
|
Abstract
Joints enable nearly all vertebrate animal motion, from feeding to locomotion. However, despite well over a century of arthrological research, we still understand very little about how the structure of joints relates to the kinematics they exhibit in life. This Commentary discusses the value of joint mobility as a lens through which to study articular form and function. By independently exploring form-mobility and mobility-function relationships and integrating the insights gained, we can develop a deep understanding of the strength and causality of articular form-function relationships. In turn, we will better illuminate the basics of 'how joints work' and be well positioned to tackle comparative investigations of the diverse repertoire of vertebrate animal motion.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06520, USA.,Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA.,Yale Peabody Museum of Natural History, 170 Whitney Avenue, New Haven, CT 06520, USA.,Department of Mechanical Engineering and Materials Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06520-8292, USA
| |
Collapse
|
7
|
Wiseman ALA, Demuth OE, Pomeroy E, De Groote I. Reconstructing Articular Cartilage in the Australopithecus afarensis Hip Joint and the Need for Modeling Six Degrees of Freedom. Integr Org Biol 2022; 4:obac031. [PMID: 36060864 PMCID: PMC9428927 DOI: 10.1093/iob/obac031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The postcranial skeleton of Australopithecus afarensis (AL 288-1) exhibits clear adaptations for bipedality, although there is some debate as to the efficiency and frequency of such upright movement. Some researchers argue that AL 288-1 walked with an erect limb like modern humans do, whilst others advocate for a "bent-hip bent-knee" (BHBK) gait, although in recent years the general consensus favors erect bipedalism. To date, no quantitative method has addressed the articulation of the AL 288-1 hip joint, nor its range of motion (ROM) with consideration for joint spacing, used as a proxy for the thickness of the articular cartilage present within the joint spacing which can affect how a joint moves. Here, we employed ROM mapping methods to estimate the joint spacing of AL 288-1's hip joint in comparison to a modern human and chimpanzee. Nine simulations assessed different joint spacing and tested the range of joint congruency (i.e., ranging from a closely packed socket to loosely packed). We further evaluated the sphericity of the femoral head and whether three rotational degrees of freedom (DOFs) sufficiently captures the full ROM or if translational DOFs must be included. With both setups, we found that the AL 288-1 hip was unlikely to be highly congruent (as it is in modern humans) because this would severely restrict hip rotational movement and would severely limit the capability for both bipedality and even arboreal locomotion. Rather, the hip was more cartilaginous than it is in the modern humans, permitting the hip to rotate into positions necessitated by both terrestrial and arboreal movements. Rotational-only simulations found that AL 288-1 was unable to extend the hip like modern humans, forcing the specimen to employ a BHBK style of walking, thus contradicting 40+ years of previous research into the locomotory capabilities of AL 288-1. Therefore, we advocate that differences in the sphericity of the AL 288-1 femoral head with that of a modern human necessitates all six DOFs to be included in which AL 288-1 could osteologically extend the hip to facilitate a human-like gait.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 1TN
- Research Centre in Evolutionary Anthropology and Paleoecology, Liverpool John Moores University, Liverpool, Merseyside L3 5UX
| | - Oliver E Demuth
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 1TN
- Structure and Motion Laboratory, Royal Veterinary College, London NW1 0TU
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge CB2 1TN
| | | |
Collapse
|
8
|
Aguilar LK, Collins CE, Ward CV, Hammond AS. Pathways to primate hip function. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211762. [PMID: 35845850 PMCID: PMC9277236 DOI: 10.1098/rsos.211762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding how diverse locomotor repertoires evolved in anthropoid primates is key to reconstructing the clade's evolution. Locomotor behaviour is often inferred from proximal femur morphology, yet the relationship of femoral variation to locomotor diversity is poorly understood. Extant acrobatic primates have greater ranges of hip joint mobility-particularly abduction-than those using more stereotyped locomotion, but how bony morphologies of the femur and pelvis interact to produce different locomotor abilities is unknown. We conducted hypothesis-driven path analyses via regularized structural equation modelling (SEM) to determine which morphological traits are the strongest predictors of hip abduction in anthropoid primates. Seven femoral morphological traits and two hip abduction measures were obtained from 25 primate species, split into broad locomotor and taxonomic groups. Through variable selection and fit testing techniques, insignificant predictors were removed to create the most parsimonious final models. Some morphological predictors, such as femur shaft length and neck-shaft angle, were important across models. Different trait combinations best predicted hip abduction by locomotor or taxonomic group, demonstrating group-specific linkages among morphology, mobility and behaviour. Our study illustrates the strength of SEM for identifying biologically important relationships between morphology and performance, which will have future applications for palaeobiological and biomechanical studies.
Collapse
Affiliation(s)
- Lucrecia K. Aguilar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - Clint E. Collins
- Department of Biological Sciences, California State University – Sacramento, Sacramento, CA 95819, USA
| | - Carol V. Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - Ashley S. Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
9
|
Cuff AR, Demuth OE, Michel K, Otero A, Pintore R, Polet DT, Wiseman ALA, Hutchinson JR. Walking-and Running and Jumping-with Dinosaurs and Their Cousins, Viewed Through the Lens of Evolutionary Biomechanics. Integr Comp Biol 2022; 62:icac049. [PMID: 35595475 DOI: 10.1093/icb/icac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Archosauria diversified throughout the Triassic Period before experiencing two mass extinctions near its end ∼201 Mya, leaving only the crocodile-lineage (Crocodylomorpha) and bird-lineage (Dinosauria) as survivors; along with the pterosaurian flying reptiles. About 50 years ago, the "locomotor superiority hypothesis" (LSH) proposed that dinosaurs ultimately dominated by the Early Jurassic Period because their locomotion was superior to other archosaurs'. This idea has been debated continuously since, with taxonomic and morphological analyses suggesting dinosaurs were "lucky" rather than surviving due to being biologically superior. However, the LSH has never been tested biomechanically. Here we present integration of experimental data from locomotion in extant archosaurs with inverse and predictive simulations of the same behaviours using musculoskeletal models, showing that we can reliably predict how extant archosaurs walk, run and jump. These simulations have been guiding predictive simulations of extinct archosaurs to estimate how they moved, and we show our progress in that endeavour. The musculoskeletal models used in these simulations can also be used for simpler analyses of form and function such as muscle moment arms, which inform us about more basic biomechanical similarities and differences between archosaurs. Placing all these data into an evolutionary and biomechanical context, we take a fresh look at the LSH as part of a critical review of competing hypotheses for why dinosaurs (and a few other archosaur clades) survived the Late Triassic extinctions. Early dinosaurs had some quantifiable differences in locomotor function and performance vs. some other archosaurs, but other derived dinosaurian features (e.g., metabolic or growth rates, ventilatory abilities) are not necessarily mutually exclusive from the LSH; or maybe even an opportunistic replacement hypothesis; in explaining dinosaurs' success.
Collapse
Affiliation(s)
- A R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Human Anatomy Resource Centre, University of Liverpool, Liverpool, United Kingdom
| | - O E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Department of Earth Sciences, University of Cambridge, United Kingdom
| | - K Michel
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| | - A Otero
- CONICET - División Paleontología de Vertebrados, Facultad de Ciencias Naturales y Museo, Anexo Laboratorios, La Plata, Argentina
| | - R Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Mécanismes adaptatifs et évolution (MECADEV) / UMR 7179, CNRS / Muséum National d'Histoire Naturelle, France
| | - D T Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| | - A L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- McDonald Institute for Archaeological Research, University of Cambridge, United Kingdom
| | - J R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| |
Collapse
|
10
|
Clear E, Grant RA, Carroll M, Brassey CA. A Review and Case Study of 3D Imaging Modalities for Female Amniote Reproductive Anatomy. Integr Comp Biol 2022; 62:icac027. [PMID: 35536568 PMCID: PMC10570564 DOI: 10.1093/icb/icac027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in non-invasive imaging methods have revitalised the field of comparative anatomy, and reproductive anatomy has been no exception. The reproductive systems of female amniotes present specific challenges, namely their often internal "hidden" anatomy. Quantifying female reproductive systems is crucial to recognising reproductive pathologies, monitoring menstrual cycles, and understanding copulatory mechanics. Here we conduct a review of the application of non-invasive imaging techniques to female amniote reproductive anatomy. We introduce the commonly used imaging modalities of computed tomography (CT) and magnetic resonance imaging (MRI), highlighting their advantages and limitations when applied to female reproductive tissues, and make suggestions for future advances. We also include a case study of micro CT and MRI, along with their associated staining protocols, applied to cadavers of female adult stoats (Mustela erminea). In doing so, we will progress the discussion surrounding the imaging of female reproductive anatomy, whilst also impacting the fields of sexual selection research and comparative anatomy more broadly.
Collapse
Affiliation(s)
- Emma Clear
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
- Williamson Park Zoo, Quernmore Road, Lancaster, Lancashire LA1 1UX, UK
| | - Robyn A Grant
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Michael Carroll
- Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Charlotte A Brassey
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| |
Collapse
|
11
|
Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR. A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs. J Anat 2022; 241:101-118. [PMID: 35118654 PMCID: PMC9178381 DOI: 10.1111/joa.13635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three‐dimensional (3‐D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3‐D pose (joint or limb configuration) and 3‐D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3‐D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.
Collapse
Affiliation(s)
- Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Armita R Manafzadeh
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Morgan L Turner
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert E Kambic
- Department of Biology, Hood College, Frederick, Maryland, USA
| | - Andrew R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Human Anatomy Resource Centre, University of Liverpool, Liverpool, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
12
|
Wiseman ALA, Demuth OE, Hutchinson JR. A Guide to Inverse Kinematic Marker-Guided Rotoscoping using IK Solvers. Integr Org Biol 2022; 4:obac002. [PMID: 35261964 PMCID: PMC8896983 DOI: 10.1093/iob/obac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray Reconstruction of Moving Morphology (XROMM) permits researchers to see beneath the skin, usually to see musculoskeletal movements. These movements can be tracked and later used to provide information regarding the mechanics of movement. Here, we discuss “IK marker-guided rotoscoping”—a method that combines inverse kinematic solvers with that of traditional scientific rotoscoping methods to quickly and efficiently overlay 3D bone geometries with the X-ray shadows from XROMM data. We use a case study of three Nile crocodiles’ (Crocodylus niloticus) forelimbs and hindlimbs to evaluate this method. Within these limbs, different marker configurations were used: some configurations had six markers, others had five markers, and all forelimb data only had three markers. To evaluate IK marker-guided rotoscoping, we systematically remove markers in the six-marker configuration and then test the magnitudes of deviation in translations and rotations of the rigged setup with fewer markers versus those of the six-marker configuration. We establish that IK marker-guided rotoscoping is a suitable method for “salvaging” data that may have too few markers.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Oliver E Demuth
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
13
|
Manafzadeh AR, Gatesy SM. Paleobiological reconstructions of articular function require all six degrees of freedom. J Anat 2021; 239:1516-1524. [PMID: 34275132 PMCID: PMC8602027 DOI: 10.1111/joa.13513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Paleobiologists typically exclude impossible joint poses from reconstructions of extinct animals by estimating the rotational range of motion (ROM) of fossil joints. However, this ubiquitous practice carries the assumption that osteological estimates of ROM consistently overestimate true joint mobility. Because studies founded on ROM-based exclusion have contributed substantially to our understanding of functional and locomotor evolution, it is critical that this assumption be tested. Here, we evaluate whether ROM-based exclusion is, as currently implemented, a reliable strategy. We measured the true mobilities of five intact cadaveric joints using marker-based X-ray Reconstruction of Moving Morphology and compared them to virtual osteological estimates of ROM made allowing (a) only all three rotational, (b) all three rotational and one translational, and (c) all three rotational and all three translational degrees of freedom. We found that allowing combinations of motions in all six degrees of freedom is necessary to ensure that true mobility is always successfully captured. In other words, failing to include joint translations in ROM analyses results in the erroneous exclusion of many joint poses that are possible in life. We therefore suggest that the functional and evolutionary conclusions of existing paleobiological reconstructions may be weakened or even overturned when all six degrees of freedom are considered. We offer an expanded methodological framework for virtual ROM estimation including joint translations and outline recommendations for future ROM-based exclusion studies.
Collapse
Affiliation(s)
- Armita R. Manafzadeh
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
| | - Stephen M. Gatesy
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
| |
Collapse
|
14
|
Pintore R, Houssaye A, Nesbitt SJ, Hutchinson JR. Femoral specializations to locomotor habits in early archosauriforms. J Anat 2021; 240:867-892. [PMID: 34841511 PMCID: PMC9005686 DOI: 10.1111/joa.13598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
The evolutionary history of archosaurs and their closest relatives is characterized by a wide diversity of locomotor modes, which has even been suggested as a pivotal aspect underlying the evolutionary success of dinosaurs vs. pseudosuchians across the Triassic–Jurassic transition. This locomotor diversity (e.g., more sprawling/erect; crouched/upright; quadrupedal/bipedal) led to several morphofunctional specializations of archosauriform limb bones that have been studied qualitatively as well as quantitatively through various linear morphometric studies. However, differences in locomotor habits have never been studied across the Triassic–Jurassic transition using 3D geometric morphometrics, which can relate how morphological features vary according to biological factors such as locomotor habit and body mass. Herein, we investigate morphological variation across a dataset of 72 femora from 36 different species of archosauriforms. First, we identify femoral head rotation, distal slope of the fourth trochanter, femoral curvature, and the angle between the lateral condyle and crista tibiofibularis as the main features varying between bipedal and quadrupedal taxa, all of these traits having a stronger locomotor signal than the lesser trochanter's proximal extent. We show a significant association between locomotor mode and phylogeny, but with the locomotor signal being stronger than the phylogenetic signal. This enables us to predict locomotor modes of some of the more ambiguous early archosauriforms without relying on the relationships between hindlimb and forelimb linear bone dimensions as in prior studies. Second, we highlight that the most important morphological variation is linked to the increase of body size, which impacts the width of the epiphyses and the roundness and proximodistal position of the fourth trochanter. Furthermore, we show that bipedal and quadrupedal archosauriforms have different allometric trajectories along the morphological variation in relation to body size. Finally, we demonstrate a covariation between locomotor mode and body size, with variations in femoral bowing (anteroposterior curvature) being more distinct among robust femora than gracile ones. We also identify a decoupling in fourth trochanter variation between locomotor mode (symmetrical to semi‐pendant) and body size (sharp to rounded). Our results indicate a similar level of morphological disparity linked to a clear convergence in femoral robusticity between the two clades of archosauriforms (Pseudosuchia and Avemetatarsalia), emphasizing the importance of accounting for body size when studying their evolutionary history, as well as when studying the functional morphology of appendicular features. Determining how early archosauriform skeletal features were impacted by locomotor habits and body size also enables us to discuss the potential homoplasy of some phylogenetic characters used previously in cladistic analyses as well as when bipedalism evolved in the avemetatarsalian lineage. This study illuminates how the evolution of femoral morphology in early archosauriforms was functionally constrained by locomotor habit and body size, which should aid ongoing discussions about the early evolution of dinosaurs and the nature of their evolutionary “success” over pseudosuchians.
Collapse
Affiliation(s)
- Romain Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Mécanismes adaptatifs et évolution (MECADEV)/UMR 7179, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Alexandra Houssaye
- Mécanismes adaptatifs et évolution (MECADEV)/UMR 7179, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | | | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
15
|
Regnault S, Fahn-Lai P, Pierce SE. Validation of an Echidna Forelimb Musculoskeletal Model Using XROMM and diceCT. Front Bioeng Biotechnol 2021; 9:751518. [PMID: 34820362 PMCID: PMC8606742 DOI: 10.3389/fbioe.2021.751518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
In evolutionary biomechanics, musculoskeletal computer models of extant and extinct taxa are often used to estimate joint range of motion (ROM) and muscle moment arms (MMAs), two parameters which form the basis of functional inferences. However, relatively few experimental studies have been performed to validate model outputs. Previously, we built a model of the short-beaked echidna (Tachyglossus aculeatus) forelimb using a traditional modelling workflow, and in this study we evaluate its behaviour and outputs using experimental data. The echidna is an unusual animal representing an edge-case for model validation: it uses a unique form of sprawling locomotion, and possesses a suite of derived anatomical features, in addition to other features reminiscent of extinct early relatives of mammals. Here we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) alongside digital and traditional dissection to evaluate muscle attachments, modelled muscle paths, and the effects of model alterations on the MMA outputs. We use X-ray Reconstruction of Moving Morphology (XROMM) to compare ex vivo joint ROM to model estimates based on osteological limits predicted via single-axis rotation, and to calculate experimental MMAs from implanted muscles using a novel geometric method. We also add additional levels of model detail, in the form of muscle architecture, to evaluate how muscle torque might alter the inferences made from MMAs alone, as is typical in evolutionary studies. Our study identifies several key findings that can be applied to future models. 1) A light-touch approach to model building can generate reasonably accurate muscle paths, and small alterations in attachment site seem to have minimal effects on model output. 2) Simultaneous movement through multiple degrees of freedom, including rotations and translation at joints, are necessary to ensure full joint ROM is captured; however, single-axis ROM can provide a reasonable approximation of mobility depending on the modelling objectives. 3) Our geometric method of calculating MMAs is consistent with model-predicted MMAs calculated via partial velocity, and is a potentially useful tool for others to create and validate musculoskeletal models. 4) Inclusion of muscle architecture data can change some functional inferences, but in many cases reinforced conclusions based on MMA alone.
Collapse
Affiliation(s)
- Sophie Regnault
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Institute of Biological, Environment and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Philip Fahn-Lai
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, United States
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
16
|
Jones KE, Brocklehurst RJ, Pierce SE. AutoBend: An Automated Approach for Estimating Intervertebral Joint Function from Bone-Only Digital Models. Integr Org Biol 2021; 3:obab026. [PMID: 34661062 PMCID: PMC8514422 DOI: 10.1093/iob/obab026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Deciphering the biological function of rare or extinct species is key to understanding evolutionary patterns across the tree of life. While soft tissues are vital determinants of joint function, they are rarely available for study. Therefore, extracting functional signals from skeletons, which are more widely available via museum collections, has become a priority for the field of comparative biomechanics. While most work has focused on the limb skeleton, the axial skeleton plays a critical role in body support, respiration, and locomotion, and is therefore of central importance for understanding broad-scale functional evolution. Here, we describe and experimentally validate AutoBend, an automated approach to estimating intervertebral joint function from bony vertebral columns. AutoBend calculates osteological range of motion (oROM) by automatically manipulating digitally articulated vertebrae while incorporating multiple constraints on motion, including both bony intersection and the role of soft tissues by restricting excessive strain in both centrum and zygapophyseal articulations. Using AutoBend and biomechanical data from cadaveric experiments on cats and tegus, we validate important modeling parameters required for oROM estimation, including the degree of zygapophyseal disarticulation, and the location of the center of rotation. Based on our validation, we apply a model with the center of rotation located within the vertebral disk, no joint translation, around 50% strain permitted in both zygapophyses and disks, and a small amount of vertebral intersection permitted. Our approach successfully reconstructs magnitudes and craniocaudal patterns of motion obtained from ex vivo experiments, supporting its potential utility. It also performs better than more typical methods that rely solely on bony intersection, emphasizing the importance of accounting for soft tissues. We estimated the sensitivity of the analyses to vertebral model construction by varying joint spacing, degree of overlap, and the impact of landmark placement. The effect of these factors was small relative to biological variation craniocaudally and between bending directions. We also present a new approach for estimating joint stiffness directly from oROM and morphometric measurements that can successfully reconstruct the craniocaudal patterns, but not magnitudes, derived from experimental data. Together, this work represents a significant step forward for understanding vertebral function in difficult-to-study (e.g., rare or extinct) species, paving the way for a broader understanding of patterns of functional evolution in the axial skeleton.
Collapse
Affiliation(s)
- K E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - R J Brocklehurst
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - S E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Suzuki D, Yamakawa S, Iijima M, Fujie H. Function of the crocodilian anterior cruciate ligaments. J Morphol 2021; 282:1514-1522. [PMID: 34309054 DOI: 10.1002/jmor.21401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
The anterior cruciate ligament (ACL) is an important knee stabilizer that prevents the anterior subluxation of the tibia. Extant crocodiles have two ACLs, the ACL major and minor, yet their functional roles are unclear. We here examined in-situ forces within the ACL major and minor in saltwater crocodiles (Crocodylus porosus) with a 6-degree-of-freedom robotic testing system under the following loading conditions: (a) 30 N anterior tibial load at 150°, 120°, and 90° knee extension; (b) 1 Nm internal/external torque at 150° and 120° knee extension; (c) 30 N anterior tibial load +1 Nm internal/external torque at 150° and 120° knee extension. The In-situ force in the ACL minor was significantly higher than that of the ACL major in response to anterior tibial load at 90° knee extension, and anterior tibial load + external torque at both 150° and 120° knee extension. Meanwhile, the force in the ACL major was significantly higher than that of the ACL minor in response to internal torque at 120° knee extension, and anterior tibial load + internal torque at 150° knee extension. The present results showed that the ACL minor and major of saltwater crocodiles have different functions. In response to anterior tibial load + internal/external torques, either of two ACLs reacted to opposing directions of knee rotation. These suggest that two ACLs are essential for walking with long axis rotation of the knee in crocodiles.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Musculoskeletal Biomechanics and Surgical Development, Sapporo Medical University, Sapporo, Japan.,Department of Health Sciences, Hokkaido Chitose Collage of Rehabilitation, Chitose, Japan
| | - Satoshi Yamakawa
- Faculty of Systems Design, Tokyo Metropolitan University, Hachioji, Japan.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masaya Iijima
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA.,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hiromichi Fujie
- Faculty of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
18
|
Sanz-Idirin A, Arroyave-Tobon S, Linares JM, Arrazola PJ. Load bearing performance of mechanical joints inspired by elbow of quadrupedal mammals. BIOINSPIRATION & BIOMIMETICS 2021; 16:046025. [PMID: 33652422 DOI: 10.1088/1748-3190/abeb57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
One of the biggest issues of the mechanical cylindrical joints is related to premature wear appearing. Application of bioinspiration principles in an engineering context taking advantage of smart solutions offered by nature in terms of kinematic joints could be a way of solving those problems. This work is focussed on joints of one degrees of freedom in rotation (revolute or ginglymus joints in biological terms), as this is one of the most common type of mechanical joints. This type of joints can be found in the elbow of some quadrupedal mammals. The articular morphology of the elbow of these animals differs in the presence/absence of a trochlear sulcus. In this study, bio-inspired mechanical joints based on these morphologies (with/without trochlear sulcus) were designed and numerically tested. Their load bearing performance was numerically analysed. This was done through contact simulations using the finite element method under different external loading conditions (axial load, radial load and turnover moment). Results showed that the tested morphologies behave differently in transmission of external mechanical loads. It was found that bio-inspired joints without trochlea sulcus showed to be more specialized in the bearing of turnover moments. Bio-inspired joints with trochlea sulcus are more suitable for supporting combined loads (axial and radial load and turnover moments). Learning about the natural rules of mechanical design can provide new insights to improve the design of current mechanical joints.
Collapse
Affiliation(s)
- Aliona Sanz-Idirin
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- Escuela Politécnica Superior de Mondragón Unibertsitatea, Loramendi 4, 20500, Mondragón, Spain
| | | | | | - Pedro José Arrazola
- Escuela Politécnica Superior de Mondragón Unibertsitatea, Loramendi 4, 20500, Mondragón, Spain
| |
Collapse
|
19
|
Turner ML, Gatesy SM. Alligators employ intermetatarsal reconfiguration to modulate plantigrade ground contact. J Exp Biol 2021; 224:269005. [PMID: 34086907 PMCID: PMC8214830 DOI: 10.1242/jeb.242240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022]
Abstract
Feet must mediate substrate interactions across an animal's entire range of limb poses used in life. Metatarsals, the ‘bones of the sole’, are the dominant pedal skeletal elements for most tetrapods. In plantigrade species that walk on the entirety of their sole, such as living crocodylians, intermetatarsal mobility offers the potential for a continuum of reconfiguration within the foot itself. Alligator hindlimbs are capable of postural extremes from a belly sprawl to a high walk to sharp turns – how does the foot morphology dynamically accommodate these diverse demands? We implemented a hybrid combination of marker-based and markerless X-ray reconstruction of moving morphology (XROMM) to measure 3D metatarsal kinematics in three juvenile American alligators (Alligator mississippiensis) across their locomotor and maneuvering repertoire on a motorized treadmill and flat-surfaced arena. We found that alligators adaptively conformed their metatarsals to the ground, maintaining plantigrade contact throughout a spectrum of limb placements with non-planar feet. Deformation of the metatarsus as a whole occurred through variable abduction (twofold range of spread) and differential metatarsal pitching (45 deg arc of skew). Internally, metatarsals also underwent up to 65 deg of long-axis rotation. Such reorientation, which correlated with skew, was constrained by the overlapping arrangement of the obliquely expanded metatarsal bases. Such a proximally overlapping metatarsal morphology is shared by fossil archosaurs and archosaur relatives. In these extinct taxa, we suggest that intermetatarsal mobility likely played a significant role in maintaining ground contact across plantigrade postural extremes. Summary: We measured 3D metatarsal kinematics in American alligators. Alligator metatarsals conform with the ground across a diversity of high walk and maneuvering postures, providing a context for interpreting the evolutionary history of metatarsals in the fossil record.
Collapse
Affiliation(s)
- Morgan L Turner
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
20
|
Wiseman ALA, Bishop PJ, Demuth OE, Cuff AR, Michel KB, Hutchinson JR. Musculoskeletal modelling of the Nile crocodile (Crocodylus niloticus) hindlimb: Effects of limb posture on leverage during terrestrial locomotion. J Anat 2021; 239:424-444. [PMID: 33754362 PMCID: PMC8273584 DOI: 10.1111/joa.13431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
We developed a three-dimensional, computational biomechanical model of a juvenile Nile crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, to investigate muscle function. We tested whether crocodiles, which are known to use a variety of limb postures during movement, use limb orientations (joint angles) that optimise the moment arms (leverages) or moment-generating capacities of their muscles during different limb postures ranging from a high walk to a sprawling motion. We also describe the three-dimensional (3D) kinematics of the crocodylian hindlimb during terrestrial locomotion across an instrumented walkway and a treadmill captured via X-ray Reconstruction of Moving Morphology (biplanar fluoroscopy; 'XROMM'). We reconstructed the 3D positions and orientations of each of the hindlimb bones and used dissection data for muscle lines of action to reconstruct a focal, subject-specific 3D musculoskeletal model. Motion data for different styles of walking (a high, crouched, bended and two types of sprawling motion) were fed into the 3D model to identify whether any joints adopted near-optimal poses for leverage across each of the behaviours. We found that (1) the hip adductors and knee extensors had their largest leverages during sprawling postures and (2) more erect postures typically involved greater peak moment arms about the hip (flexion-extension), knee (flexion) and metatarsophalangeal (flexion) joints. The results did not fully support the hypothesis that optimal poses are present during different locomotory behaviours because the peak capacities were not always reached around mid-stance phase. Furthermore, we obtained few clear trends for isometric moment-generating capacities. Therefore, perhaps peak muscular leverage in Nile crocodiles is instead reached either in early/late stance or possibly during swing phase or other locomotory behaviours that were not studied here, such as non-terrestrial movement. Alternatively, our findings could reflect a trade-off between having to execute different postures, meaning that hindlimb muscle leverage is not optimised for any singular posture or behaviour. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in extant crocodiles which can form a basis for investigating muscle function in extinct archosaurs.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - Peter J Bishop
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Geosciences Program, Queensland Museum, Brisbane, Qld, Australia.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | - Oliver E Demuth
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Andrew R Cuff
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Hull York Medical School, University of York, York, UK
| | - Krijn B Michel
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
21
|
Abstract
X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
22
|
Tsai HP, Middleton KM, Hutchinson JR, Holliday CM. More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs. Evolution 2020; 74:1654-1681. [PMID: 32433795 DOI: 10.1111/evo.14017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Saurischian dinosaurs evolved seven orders of magnitude in body mass, as well as a wide diversity of hip joint morphology and locomotor postures. The very largest saurischians possess incongruent bony hip joints, suggesting that large volumes of soft tissues mediated hip articulation. To understand the evolutionary trends and functional relationships between body size and hip anatomy of saurischians, we tested the relationships among discrete and continuous morphological characters using phylogenetically corrected regression. Giant theropods and sauropods convergently evolved highly cartilaginous hip joints by reducing supraacetabular ossifications, a condition unlike that in early dinosauromorphs. However, transitions in femoral and acetabular soft tissues indicate that large sauropods and theropods built their hip joints in fundamentally different ways. In sauropods, the femoral head possesses irregularly rugose subchondral surfaces for thick hyaline cartilage. Hip articulation was achieved primarily using the highly cartilaginous femoral head and the supraacetabular labrum on the acetabular ceiling. In contrast, theropods covered their femoral head and neck with thinner hyaline cartilage and maintained extensive articulation between the fibrocartilaginous femoral neck and the antitrochanter. These findings suggest that the hip joints of giant sauropods were built to sustain large compressive loads, whereas those of giant theropods experienced compression and shear forces.
Collapse
Affiliation(s)
- Henry P Tsai
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - John R Hutchinson
- Structure and Motion Lab, The Royal Veterinary College, Hertfordshire, AL9 7TA, United Kingdom
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| |
Collapse
|