1
|
Knittel R, Paton D, Beer TW. Superficial Papular Neuroma: Two Cases of a Distinctive Dermal Neoplasm. Am J Dermatopathol 2025; 47:59-61. [PMID: 39481035 DOI: 10.1097/dad.0000000000002872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ABSTRACT Superficial papular neuroma is a rare cutaneous spindle cell lesion, with only 5 cases reported in 2 studies. We document 2 additional cases in a 45-year-old man and a 43-year-old woman (the first case identified in a woman). Clinically, superficial papular neuromas appear as a single, non-specific papule on the head, neck, or back. Histologically, these lesions are within the papillary and superficial reticular dermis, with nerve-like structures composed of bland spindle-shaped cells intersecting normal tissue with mild reactive acanthosis. The cells are SOX10 positive with neurofilament protein staining multiple axons within. The nerve-like structures in this study were occasionally surrounded by a thin rim of CD34 positivity, with no epithelial membrane antigen staining, similar to normal sensory neurons. Superficial papular neuroma are rare benign neoplasms with no reports of recurrence, even when incompletely excised.
Collapse
Affiliation(s)
- Ronan Knittel
- Anatomical Pathology, PathWest, Queen Elizabeth II Medical Centre, Perth, WA, Australia ; and
- Anatomical Pathology, Clinipath Laboratory, Perth, WA, Australia
| | - David Paton
- Anatomical Pathology, Clinipath Laboratory, Perth, WA, Australia
| | - Trevor W Beer
- Anatomical Pathology, Clinipath Laboratory, Perth, WA, Australia
| |
Collapse
|
2
|
Constantin AM, Boşca AB, Crivii CB, Crintea A, Sufleţel RT, Alexandru BC, Şovrea AS. The intriguing perineurial cells - an updated overview of their origin, structure, functions and implication in pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:567-574. [PMID: 39957017 PMCID: PMC11924920 DOI: 10.47162/rjme.65.4.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025]
Abstract
The paper overviews the uniquely intricate and distinct perineurium that envelops nerve fibers in bundles. It consists of perineurial cells (PCs), connective tissue, and blood vessels. The perineurium creates a microenvironment for efficient signal transmission, protects and maintains neuronal structure and function, and facilitates neuronal repair. PCs are a unique type of myofibroblasts essential for maintaining nerve homeostasis. They act as an effective blood-nerve barrier (BNB), protecting against toxins, infections, and mechanical trauma. Despite their crucial function, the origin, ultrastructure, molecular structure, and functional roles of PCs remain a mystery, making them a fascinating area of study.
Collapse
Affiliation(s)
- Anne Marie Constantin
- Discipline of Histology, Department of Morpho-functional Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | |
Collapse
|
3
|
Samain-Aupic L, Dione M, Ribot-Ciscar E, Ackerley R, Aimonetti JM. Relations between tactile sensitivity of the finger, arm, and cheek skin over the lifespan showing decline only on the finger. Front Aging Neurosci 2024; 16:1387136. [PMID: 39015473 PMCID: PMC11250473 DOI: 10.3389/fnagi.2024.1387136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 07/18/2024] Open
Abstract
Touch sensitivity generally declines with age, contributing to loss of manual dexterity and tactile function. We investigated how touch changes over the lifespan, using different tests and on three body sites. We used a classical test of force detection sensitivity, where calibrated monofilaments were applied passively to the right index finger pad, forearm, and cheek. In addition, at the index, we used an active touch spatial discrimination task, developed by our group. Spatial discrimination was estimated through participants' ability to evaluate the distance between parallel bands printed on acrylic plates. Data were collected from 96 healthy women, aged 20-75 years. Force detection and tactile spatial discrimination on the index deteriorated significantly with age; however, no change was found for tactile detection on the forearm or cheek. Tactile detection on the cheek remained remarkably highly sensitive throughout life. There was a significant positive relationship between force detection and spatial discrimination on the index. Further, force detection on the forearm was significantly associated with detection on the index and cheek. Our results suggest a decrease in touch perception with age on the index finger pad, yet a preservation of tactile sensitivity in hairy skin. This opens discussion about the impact of daily activities upon the glabrous hand skin and on the function of hairs in tactile sensitivity. We highlight the need for new methods in evaluating tactile sensitivity on hairy skin.
Collapse
|
4
|
Bhat GM, Bashir S, Jan SS, Banoo S, Khan JA. Bovine Meissner-like corpuscle and evolutionary ecology of mammalian somatosensory acuity. Anat Histol Embryol 2024; 53:e12969. [PMID: 37724616 DOI: 10.1111/ahe.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The mammalian snout has Meissner's corpuscles (MCs), which transmit epicritic sensations as the animal explores its surroundings. To comprehend the somatosensory acuity in mammals, we examined the structural organization and density of bovine Meissner-like corpuscles (BMLCs) at various ages and compared the changes with other mammalian MCs. The skin from the snout of cows or oxen (2-11 years old) was obtained and processed through routine histological technique. Five-μm thick sections were prepared, silver stained according to the Bielschowsky technique as modified by Winkelman and Schmidt (Mayo Clinic Proceedings, 1957, 217), and observed under a compound light microscope quantitatively and qualitatively. The glabrous skin of the cow snout consisted of two types of BMLCs: One was a cylindrical or elongated structure found in the dermal papillae. The other type was spherical and developed in the superficial layers of the epidermis. BMLCs consisted of both coarse and fine nerve fibres. In the young, the corpuscle comprised thin nerve fibres with indistinct cell outlines. In adults, nerve fibres in the corpuscles were closely packed, and networks, varicosities and end bulbs were well developed. With advancing age, the MCs attenuated into a disorganized mass of nerve fibres. The bovine snout is a highly evolved somatosensory organ due to its rich nerve supply and functionally resembles the anthropoid fingertip. Somatosensory acuity will be lower in the glabrous bovine skin than in primate glabrous skin of the fingertip, as the nerve terminals within the BMLCs are less elaborate in content and structural complexity.
Collapse
Affiliation(s)
- Ghulam M Bhat
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Samina Bashir
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shah S Jan
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shamima Banoo
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Javeed A Khan
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
5
|
Yamamoto Y, Sasaki K, Komuro M, Yokoyama T, Abdali SS, Nakamuta N. Three-dimensional architecture of the subepithelial corpuscular nerve ending in the rat epiglottis reconstructed by array tomography with scanning electron microscopy. J Comp Neurol 2023; 531:1846-1866. [PMID: 37794741 DOI: 10.1002/cne.25544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
In the rat laryngeal mucosa, subepithelial corpuscular nerve endings, called laminar nerve endings, are distributed in the epiglottis and arytenoid region and are activated by the pressure changes of the laryngeal cavity. They are also suggested to play a role in efferent regulation because of secretory vesicles in the axoplasm. In the present study, the laminar nerve endings in the rat laryngeal mucosa were analyzed by 3D reconstruction from serial ultrathin sections in addition to immunohistochemistry for synapsin 1. In the light microscopy, synapsin 1-immunoreactive flattened or bulbous terminal parts of the laminar endings were also immunoreactive with VGLUT1, and were surrounded by S100- or S100B-immunoreactive Schwann cells and vimentin-immunoreactive fibroblasts. In the electron microscopy, 3D reconstruction views showed that laminar endings were composed of flattened terminal parts sized 2-5 μm in longitudinal length, overlapping in three to five multiple layers. The terminal parts of the endings were incompletely wrapped by flat cytoplasmic processes of the Schwann cells. In addition, the fibroblast network surrounded the complex of nerve endings and the Schwann cells. Several terminal parts entered through the basement membrane into the epithelial layer and attached to the basal epithelial cells, suggesting that interaction between epithelial cells and laminar nerve endings plays an important role in sensing the pressure changes in the laryngeal cavity. Secretory vesicles were unevenly distributed throughout the terminal part of the laminar nerve endings. The secretory vesicles were frequently observed in the peripheral limb of the terminal parts. It suggests that the laminar nerve endings in the larynx may release glutamate to maintain continuous discharge during the stretching of the laryngeal mucosa.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kuniaki Sasaki
- Center for Electron Microscopy, Iwate University, Morioka, Japan
| | - Misaki Komuro
- Center for Electron Microscopy, Iwate University, Morioka, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Sayed Sharif Abdali
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
6
|
IWANAGA T, TAKAHASHI-IWANAGA H, NIO-KOBAYASHI J, EBARA S. Structure and barrier functions of the perineurium and its relationship with associated sensory corpuscles: A review. Biomed Res 2022; 43:145-159. [DOI: 10.2220/biomedres.43.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | | | | | |
Collapse
|
7
|
Suazo I, Vega JA, García-Mesa Y, García-Piqueras J, García-Suárez O, Cobo T. The Lamellar Cells of Vertebrate Meissner and Pacinian Corpuscles: Development, Characterization, and Functions. Front Neurosci 2022; 16:790130. [PMID: 35356056 PMCID: PMC8959428 DOI: 10.3389/fnins.2022.790130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory corpuscles, or cutaneous end-organ complexes, are complex structures localized at the periphery of Aβ-axon terminals from primary sensory neurons that primarily work as low-threshold mechanoreceptors. Structurally, they consist, in addition to the axons, of non-myelinating Schwann-like cells (terminal glial cells) and endoneurial- and perineurial-related cells. The terminal glial cells are the so-called lamellar cells in Meissner and Pacinian corpuscles. Lamellar cells are variably arranged in sensory corpuscles as a “coin stack” in the Meissner corpuscles or as an “onion bulb” in the Pacinian ones. Nevertheless, the origin and protein profile of the lamellar cells in both morphotypes of sensory corpuscles is quite similar, although it differs in the expression of mechano-gated ion channels as well as in the composition of the extracellular matrix between the cells. The lamellar cells have been regarded as supportive cells playing a passive role in the process of genesis of the action potential, i.e., the mechanotransduction process. However, they express ion channels related to the mechano–electric transduction and show a synapse-like mechanism that suggest neurotransmission at the genesis of the electrical action potential. This review updates the current knowledge about the embryonic origin, development modifications, spatial arrangement, ultrastructural characteristics, and protein profile of the lamellar cells of cutaneous end-organ complexes focusing on Meissner and Pacinian morphotypes.
Collapse
Affiliation(s)
- Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: José A. Vega,
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
8
|
García-Mesa Y, García-Piqueras J, Cobo R, Martín-Cruces J, Suazo I, García-Suárez O, Feito J, Vega JA. Sensory innervation of the human male prepuce: Meissner's corpuscles predominate. J Anat 2021; 239:892-902. [PMID: 34120333 PMCID: PMC8450466 DOI: 10.1111/joa.13481] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 01/28/2023] Open
Abstract
Meissner's corpuscles are the most abundant sensory corpuscles in the glabrous skin of the male prepuce. They are type I, rapidly adapting, low‐threshold mechanoreceptors, and their function is linked to the expression of the mechanoprotein piezo‐type mechanosensitive ion channel component 2 (PIEZO2). Stimulation of genital Meissner's corpuscles gives rise to sexual sensations. It has been recently demonstrated that digital Meissner's corpuscles, Meissner‐like corpuscles, and genital end bulbs have an endoneurium‐like capsule surrounding their neuronal elements; that is, the axon and glial lamellar cells, and their axons, display PIEZO2 immunoreactivity. It is unknown whether this is also the case for preputial Meissner's corpuscles. Furthermore, the expression of certain proteins that have been found in Meissner's corpuscles at other anatomical locations, especially in the digits, has not been investigated in preputial Meissner's corpuscles. Here, we used immunohistochemistry to investigate the expression of axonal (neurofilament, neuron‐specific enolase), glial (S100 protein, glial fibrillary acidic protein, vimentin), endoneurial (CD34), and perineurial (glucose transporter 1) markers in the preputial and digital Meissner's corpuscles of male participants aged between 5 and 23 years. Furthermore, we investigated the occurrence of the mechanoprotein PIEZO2 in male preputial Meissner's corpuscles. Human male prepuce contains numerous Meissner's corpuscles, which may be grouped or isolated and are regularly distributed in the dermal papillae. Lamellar glial cells display strong expression of S100 protein and vimentin but lack expression of glial fibrillary acidic protein. In addition, they show axonal PIEZO2 expression and have an endoneurial capsule, but no perineurial. Our results indicate that human male preputial Meissner's corpuscles share the immunohistochemical profile of digital Meissner's corpuscles, which is considered to be necessary for mechanotransduction. These data strongly suggest that the structure and function of Meissner's corpuscles are independent of their anatomical location.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Ramón Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - José Martín-Cruces
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Iván Suazo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Salamanca, Spain.,Departamento de Anatomía e Histología Humanas, Universidad de Salamanca, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
9
|
García‐Mesa Y, Cárcaba L, Coronado C, Cobo R, Martín‐Cruces J, García‐Piqueras J, Feito J, García‐Suárez O, Vega JA. Glans clitoris innervation: PIEZO2 and sexual mechanosensitivity. J Anat 2021; 238:446-454. [PMID: 32996126 PMCID: PMC7812125 DOI: 10.1111/joa.13317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 02/03/2023] Open
Abstract
The clitoris is a leading player in female sexual arousal, if not the main protagonist. Despite this role, studies performed on this structure with specific neuroanatomical techniques are few. This study focuses on glans clitoris innervation, with special emphasis on sensory corpuscles and the presence of the mechanotransducer protein PIEZO2 in these structures. Six glans clitoris samples were obtained at autopsy covering an age spectrum between 52 and 83 years old. Several types of nerve terminations including free nerve endings, genital endbulbs as well as Meissner-like corpuscles and Pacinian corpuscles, but not Ruffini corpuscles, were found. Although corpuscular morphology in the glans clitoris was subtly different from the cutaneous digital counterparts, their basic composition was comparable for both Pacinian and Meissner-like corpuscles. Genital endbulbs showed heterogeneous morphology, and the axons usually exhibited a typical "wool ball" or "yarn ball" aspect. Some of them were lobulated and variably encapsulated by endoneurial elements (65%); from the capsule originate septa that divides the genital endbulbs, suggesting that they are found in clusters rather than as single corpuscles. In addition, most corpuscles in the glans clitoris showed axonal PIEZO2 immunoreactivity, thus, suggesting a mechanical role and molecular mechanisms of mechanosensibility similar to those of digital Meissner's corpuscles. Our results demonstrate that sensory corpuscles of the glans clitoris are similar to those of other glabrous skin zones, as most genital organs are characterized by clusters of corpuscles and the occurrence of the mechanoprotein PIEZO2 in the axons. These findings strongly suggest that PIEZO2 participates in erotic and sexual mechanical sensing.
Collapse
Affiliation(s)
- Yolanda García‐Mesa
- Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain
| | - Lucía Cárcaba
- Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain
| | - César Coronado
- Facultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| | - Ramón Cobo
- Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain
| | - José Martín‐Cruces
- Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain
| | | | - Jorge Feito
- Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain,Servicio de Anatomía PatológicaComplejo Hospitalario Universitario de SalamancaSalamancaSpain
| | | | - José A. Vega
- Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain,Facultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| |
Collapse
|
10
|
The Human Cutaneous Sensory Corpuscles: An Update. J Clin Med 2021; 10:jcm10020227. [PMID: 33435193 PMCID: PMC7827880 DOI: 10.3390/jcm10020227] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Sensory corpuscles of human skin are terminals of primary mechanoreceptive neurons associated with non-neuronal cells that function as low-threshold mechanoreceptors. Structurally, they consist of an extreme tip of a mechanosensory axon and nonmyelinating peripheral glial cells variably arranged according to the morphotype of the sensory corpuscle, all covered for connective cells of endoneurial and/or perineurial origin. Although the pathologies of sensitive corpuscles are scarce and almost never severe, adequate knowledge of the structure and immunohistochemical profile of these formations is essential for dermatologists and pathologists. In fact, since sensory corpuscles and nerves share a basic structure and protein composition, a cutaneous biopsy may be a complementary method for the analysis of nerve involvement in peripheral neuropathies, systemic diseases, and several pathologies of the central nervous system. Thus, a biopsy of cutaneous sensory corpuscles can provide information for the diagnosis, evolution, and effectiveness of treatments of some pathologies in which they are involved. Here, we updated and summarized the current knowledge about the immunohistochemistry of human sensory corpuscles with the aim to provide information to dermatologists and skin pathologists.
Collapse
|
11
|
Cobo R, García‐Mesa Y, Cárcaba L, Martin‐Cruces J, Feito J, García‐Suárez O, Cobo J, García‐Piqueras J, Vega JA. Verification and characterisation of human digital Ruffini's sensory corpuscles. J Anat 2021; 238:13-19. [PMID: 32864772 PMCID: PMC7754963 DOI: 10.1111/joa.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Ruffini's corpuscles are present as long fusiform encapsulated sensory structures in different tissues including the skin. Although physiological analyses strongly suggest their existence in glabrous digital skin, such localisation remains unconfirmed. Here, we have investigated the occurrence of typical Ruffini's corpuscles in 372 sections of human digital skin obtained from 186 subjects of both sexes and different ages (19-92 years). S100 protein, neuron-specific enolase and neurofilament proteins were detected, and the basic immunohistochemical profile of these corpuscles was analysed. Fewer than 0.3 Ruffini's corpuscles/mm2 were detected, with density distribution across the fingers being F4 > F3 > F2 > F1 > F5 and absolute values being F2 > F1 > F3 > F4 > F5. Axons displayed neuron-specific enolase immunoreactivity, glial cells forming the core contained S100 protein, and the capsule was positive for CD34 but not Glut1, demonstrating an endoneurial origin. Present results demonstrate the existence of Ruffini's corpuscles in human glabrous digital skin at very low densities. Moreover, the identified Ruffini's corpuscles share the basic immunohistochemical characteristics of other dermal sensory corpuscles.
Collapse
Affiliation(s)
- Ramón Cobo
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Yolanda García‐Mesa
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Lucía Cárcaba
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José Martin‐Cruces
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Jorge Feito
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Servicio de Anatomía PatológicaComplejo Hospitalario Universitario de SalamancaSalamancaSpain
| | - Olivia García‐Suárez
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico‐QuirúrgicasUniversidad de OviedoOviedoSpain,Instituto Asturiano de OdontologíaOviedoSpain
| | - Jorge García‐Piqueras
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José A. Vega
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Facultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| |
Collapse
|
12
|
Peripheral Mechanobiology of Touch-Studies on Vertebrate Cutaneous Sensory Corpuscles. Int J Mol Sci 2020; 21:ijms21176221. [PMID: 32867400 PMCID: PMC7504094 DOI: 10.3390/ijms21176221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family. This review updates the current data about the occurrence and distribution of putative mechanosensitive ion channels in cutaneous mechanoreceptors including primary sensory neurons and sensory corpuscles.
Collapse
|
13
|
Cobo R, García-Mesa Y, García-Piqueras J, Feito J, Martín-Cruces J, García-Suárez O, A. Vega J. The Glial Cell of Human Cutaneous Sensory Corpuscles: Origin, Characterization, and Putative Roles. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Telocytes in the Normal and Pathological Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21124320. [PMID: 32560571 PMCID: PMC7352954 DOI: 10.3390/ijms21124320] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
We studied telocytes/CD34+ stromal cells in the normal and pathological peripheral nervous system (PNS), for which we reviewed the literature and contributed our observations under light and electron microscopy in this field. We consider the following aspects: (A) general characteristics of telocytes and the terminology used for these cells (e.g., endoneurial stromal cells) in PNS; (B) the presence, characteristics and arrangement of telocytes in the normal PNS, including (i) nerve epi-perineurium and endoneurium (e.g., telopodes extending into the endoneurial space); (ii) sensory nerve endings (e.g., Meissner and Pacinian corpuscles, and neuromuscular spindles); (iii) ganglia; and (iv) the intestinal autonomic nervous system; (C) the telocytes in the pathologic PNS, encompassing (i) hyperplastic neurogenic processes (neurogenic hyperplasia of the appendix and gallbladder), highly demonstrative of telocyte characteristics and relations, (ii) PNS tumours, such as neurofibroma, schwannoma, granular cell tumour and nerve sheath myxoma, and interstitial cell of Cajal-related gastrointestinal stromal tumour (GIST), (iii) tumour-invaded nerves and (iv) traumatic, metabolic, degenerative or genetic neuropathies, in which there are fewer studies on telocytes, e.g., neuroinflammation and nerves in undescended testicles (cryptorchidism), Klinefelter syndrome, crush injury, mucopolysaccharidosis II (Hunter’s syndrome) and Charcot–Marie–Tooth disease.
Collapse
|