1
|
Diester CM, Balint H, Gillespie JC, Lichtman AH, Sim-Selley LJ, Selley DE, Negus SS. Effects of Repeated Treatment with the Monoacylglycerol Lipase Inhibitor MJN110 on Pain-Related Depression of Nesting and Cannabinoid 1 Receptor Function in Male and Female Mice. J Pharmacol Exp Ther 2024; 390:291-301. [PMID: 38262742 PMCID: PMC11338278 DOI: 10.1124/jpet.123.001940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid 2-arachidonoylglycerol , an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB1/2R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB1R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2 × 2 design with (a) 1.0 mg/kg/d MJN110 or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord (LSC) and five brain regions using an assay of CP55,940-stimulated [35S]GTPɣS activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [35S]GTPɣS binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB1R desensitization in this model of IP acid-induced nesting depression. SIGNIFICANCE STATEMENT: The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.
Collapse
Affiliation(s)
- Clare M Diester
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Hallie Balint
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - James C Gillespie
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Dana E Selley
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - S Stevens Negus
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
2
|
Radecki KC, Ford MJ, Phillipps HR, Lorenson MY, Grattan DR, Yamanaka Y, Walker AM. Multiple cell types in the oviduct express the prolactin receptor. FASEB Bioadv 2022; 4:485-504. [PMID: 35812077 PMCID: PMC9254223 DOI: 10.1096/fba.2022-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Little is known about the physiological role of prolactin in the oviduct. Examining mRNA for all four isoforms of the prolactin receptor (PRLR) in mice by functional oviduct segment and stage of the estrous cycle, we found short form 3 (SF3) to be the most highly expressed, far exceeding the long form (LF) in highly ciliated areas such as the infundibulum, whereas in areas of low ciliation, the SF3 to LF ratio was ~1. SF2 expression was low throughout the oviduct, and SF1 was undetectable. Only in the infundibulum did PRLR ratios change with the estrous cycle. Immunofluorescent localization of SF3 and LF showed an epithelial (both mucosal and mesothelial) distribution aligned with the mRNA results. Despite the high SF3/LF ratio in densely ciliated regions, these regions responded to an acute elevation of prolactin (30 min, intraperitoneal), with LF-tyrosine phosphorylated STAT5 seen within cilia. Collectively, these results show ciliated cells are responsive to prolactin and suggest that prolactin regulates estrous cyclic changes in ciliated cell function in the infundibulum. Changes in gene expression in the infundibulum after prolonged prolactin treatment (7-day) showed prolactin-induced downregulation of genes necessary for cilium development/function, a result supporting localization of PRLRs on ciliated cells, and one further suggesting hyperprolactinemia would negatively impact ciliated cell function and therefore fertility. Flow cytometry, single-cell RNAseq, and analysis of LF-td-Tomato transgenic mice supported expression of PRLRs in at least a proportion of epithelial cells while also hinting at additional roles for prolactin in smooth muscle and other stromal cells.
Collapse
Affiliation(s)
- Kelly C. Radecki
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - Matthew J. Ford
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Hollian R. Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Mary Y. Lorenson
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Yojiro Yamanaka
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Ameae M. Walker
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
3
|
Hsu CF, Seenan V, Wang LY, Chu TY. Ovulation Enhances Intraperitoneal and Ovarian Seedings of High-Grade Serous Carcinoma Cells Originating from the Fallopian Tube: Confirmation in a Bursa-Free Mouse Xenograft Model. Int J Mol Sci 2022; 23:ijms23116211. [PMID: 35682896 PMCID: PMC9181345 DOI: 10.3390/ijms23116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Recently, new paradigms for the etiology and origin of ovarian high-grade serous carcinoma (HGSC) have emerged. The carcinogens released during ovulation transform fallopian tube epithelial cells, exfoliating and metastasizing to the peritoneal organs, including the ovaries. Solid in vivo evidence of the paradigms in a mouse model is urgently needed but is hampered by the differing tubo-ovarian structures. In mice, there is a bursa structure surrounding the distal oviduct and ovary. This, on one hand, prevents the direct influence of ovulatory follicular fluid (FF) on the exfoliated tumor cells. On the other hand, it hinders the seeding of exfoliated tumor cells into the ovary. Methods: In this study, we created a bursa-free mouse xenograft model to examine the effect of superovulation on peritoneal and ovarian metastases of transformed human tubal epithelial cells after intraperitoneal injection in NSG mice. Results: The bursa-free mouse model showed a better effect of ovulation on peritoneal metastasis. In this model, superovulation increased the number of transformed human tubal epithelial cell seedlings after intraperitoneal injection. Compared to the bursa-intact state, bursa-free ovaries were more vulnerable to external tumor seeding in either normal ovulation or superovulation state. Conclusions: This study provides the first in vivo evidence that intraperitoneal spreading of tubal HGSC cells is enhanced by ovulation. This study also demonstrated a mouse model for studying ovary-peritoneum interaction in cancer development.
Collapse
Affiliation(s)
- Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
| | - Vaishnavi Seenan
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Liang-Yuan Wang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Shinohara H, Kurahashi Y, Ishida Y. Gastric equivalent of the 'Holy Plane' to standardize the surgical concept of stomach cancer to mesogastric excision: updating Jamieson and Dobson's historic schema. Gastric Cancer 2021; 24:273-282. [PMID: 33387120 DOI: 10.1007/s10120-020-01142-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Surgery for curable gastric cancer has historically involved dissection of lymph nodes, depending on the risk of metastasis. By establishing the concept of mesogastric excision (MGE), we aim to make this approach compatible with that for colorectal cancer, where the standard is excision of the mesentery. METHODS Current advances in molecular embryology, visceral anatomy, and surgical techniques were integrated to update Jamieson and Dobson's schema, a historical reference for the mesogastrium. RESULTS The mesogastrium develops with a three-dimensional movement, involving multiple fusions with surrounding structures (retroperitoneum or other mesenteries) and imbedding parenchymal organs (pancreas, liver, and spleen) that grow within the mesentery. Meanwhile, the fusion fascia and the investing fascia interface with adjacent structures of different embryological origin, which we consider to be equivalent to the 'Holy Plane' in rectal surgery emphasized by Heald in the concept of total mesorectal excision. Dissecting these fasciae allows for oncologic MGE, consisting of removing lymph node-containing mesenteric adipose tissue with an intact fascial package. MGE is theoretically compatible with its colorectal counterpart, although complete removal of the mesogastrium is not possible due to the need to spare imbedded vital organs. The celiac axis is treated as the central artery of the mesogastrium, but is peripherally ligated by tributaries flowing into the stomach to feed the spared organs. CONCLUSION The obscure contour of the mesogastrium can be clarified by thinking of it as the gastric equivalent of the 'Holy Plane'. MGE could be a standard concept for surgical treatment of stomach cancer.
Collapse
Affiliation(s)
- Hisashi Shinohara
- Department of Gastroenterological Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yasunori Kurahashi
- Department of Gastroenterological Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshinori Ishida
- Department of Gastroenterological Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|