1
|
Landzhov B, Hinova-Palova D, Fakih K, Edelstein L, Gaydarski L, Alexandrov A, Kirkov V, Paloff A, Radeva E. Corticoclaustral connections in the cat. J Histotechnol 2025:1-11. [PMID: 40084604 DOI: 10.1080/01478885.2025.2476835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
The claustrum is a sheet-like layer of gray matter situated between the external and extreme capsules of the mammalian brain. This structure was first described by the French physician and anatomist Vicq d'Azyr in 1786. The claustrum's phylogeny, ontogeny and functional characteristics have long been the subject of debate and considerable investigative efforts. However, despite such efforts (or perhaps as a result thereof), significant disparities and discrepancies remain, most notably in the context of the claustrum's afferent and efferent connections. For the purpose of this study, we sought to focus our efforts on fronto-claustral and occipito-claustral connections. Twelve healthy, adult male cats, each weighing ~ 3.5 kg, were studied, seven of which underwent electrolytic lesions of the frontal cortex (A3, A4, and a portion of A6), and five of the occipital cortex (A17, A18, A21). From three to six days after lesioning, subjects were euthanized in accordance with ethical norms. After the brains were removed and blocked, samples of the claustrum were taken and prepared for electron microscopy. Three to six days after lesions of the frontal cortex, we observed an abundance of degenerative boutons in the dorsal claustrum. The vast majority of boutons exhibited the characteristic signs of dark degeneration, whereas only 10% appeared to have undergone light degeneration. Similar results were seen in the dorsal claustrum over the same period of time following lesions of the visual cortex. These results suggest that the dorsal claustrum receives at least two types of connections - separately and concurrently - from the frontal and occipital cortices.
Collapse
Affiliation(s)
- B Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - D Hinova-Palova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - K Fakih
- Department of Oral and Maxillofacial Surgery, Medical University of Sofia, Sofia, Bulgaria
| | - L Edelstein
- Department of Experimental Neuroanatomy, Medimark Corporation, San Diego, CA, USA
| | - L Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - A Alexandrov
- Department of Forensic Medicine and Deontology, Medical University of Sofia, Sofia, Bulgaria
| | - V Kirkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - A Paloff
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - E Radeva
- Department of Conservative Dentistry, Faculty of Dental Medicine, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Behroozi M, Graïc JM, Gerussi T. Beyond the surface: how ex-vivo diffusion-weighted imaging reveals large animal brain microstructure and connectivity. Front Neurosci 2024; 18:1411982. [PMID: 38988768 PMCID: PMC11233460 DOI: 10.3389/fnins.2024.1411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Diffusion-weighted Imaging (DWI) is an effective and state-of-the-art neuroimaging method that non-invasively reveals the microstructure and connectivity of tissues. Recently, novel applications of the DWI technique in studying large brains through ex-vivo imaging enabled researchers to gain insights into the complex neural architecture in different species such as those of Perissodactyla (e.g., horses and rhinos), Artiodactyla (e.g., bovids, swines, and cetaceans), and Carnivora (e.g., felids, canids, and pinnipeds). Classical in-vivo tract-tracing methods are usually considered unsuitable for ethical and practical reasons, in large animals or protected species. Ex-vivo DWI-based tractography offers the chance to examine the microstructure and connectivity of formalin-fixed tissues with scan times and precision that is not feasible in-vivo. This paper explores DWI's application to ex-vivo brains of large animals, highlighting the unique insights it offers into the structure of sometimes phylogenetically different neural networks, the connectivity of white matter tracts, and comparative evolutionary adaptations. Here, we also summarize the challenges, concerns, and perspectives of ex-vivo DWI that will shape the future of the field in large brains.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
De Vreese S, Orekhova K, Morell M, Gerussi T, Graïc JM. Neuroanatomy of the Cetacean Sensory Systems. Animals (Basel) 2023; 14:66. [PMID: 38200796 PMCID: PMC10778493 DOI: 10.3390/ani14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Cetaceans have undergone profound sensory adaptations in response to their aquatic environment during evolution. These adaptations are characterised by anatomo-functional changes in the classically defined sensory systems, shaping their neuroanatomy accordingly. This review offers a concise and up-to-date overview of our current understanding of the neuroanatomy associated with cetacean sensory systems. It encompasses a wide spectrum, ranging from the peripheral sensory cells responsible for detecting environmental cues, to the intricate structures within the central nervous system that process and interpret sensory information. Despite considerable progress in this field, numerous knowledge gaps persist, impeding a comprehensive and integrated understanding of their sensory adaptations, and through them, of their sensory perspective. By synthesising recent advances in neuroanatomical research, this review aims to shed light on the intricate sensory alterations that differentiate cetaceans from other mammals and allow them to thrive in the marine environment. Furthermore, it highlights pertinent knowledge gaps and invites future investigations to deepen our understanding of the complex processes in cetacean sensory ecology and anatomy, physiology and pathology in the scope of conservation biology.
Collapse
Affiliation(s)
- Steffen De Vreese
- Laboratory of Applied Bioacoustics (LAB), Universitat Politècnica de Catalunya-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Spain
| | - Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy; (K.O.); (T.G.); (J.-M.G.)
| | - Maria Morell
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany;
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy; (K.O.); (T.G.); (J.-M.G.)
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy; (K.O.); (T.G.); (J.-M.G.)
| |
Collapse
|
4
|
Grimstvedt JS, Shelton AM, Hoerder‐Suabedissen A, Oliver DK, Berndtsson CH, Blankvoort S, Nair RR, Packer AM, Witter MP, Kentros CG. A multifaceted architectural framework of the mouse claustrum complex. J Comp Neurol 2023; 531:1772-1795. [PMID: 37782702 PMCID: PMC10953385 DOI: 10.1002/cne.25539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.
Collapse
Affiliation(s)
- Joachim S. Grimstvedt
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Andrew M. Shelton
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | | | - David K. Oliver
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | - Christin H. Berndtsson
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Stefan Blankvoort
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar R. Nair
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Adam M. Packer
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | - Menno P. Witter
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford G. Kentros
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
- Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
5
|
Pirone A, Ciregia F, Lazzarini G, Miragliotta V, Ronci M, Zuccarini M, Zallocco L, Beghelli D, Mazzoni MR, Lucacchini A, Giusti L. Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum. Mol Neurobiol 2023; 60:4336-4358. [PMID: 37095366 PMCID: PMC10293365 DOI: 10.1007/s12035-023-03347-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The present study, employing a comparative proteomic approach, analyzes the protein profile of pig claustrum (CLA), putamen (PU), and insula (IN). Pig brain is an interesting model whose key translational features are its similarities with cortical and subcortical structures of human brain. A greater difference in protein spot expression was observed in CLA vs PU as compared to CLA vs IN. The deregulated proteins identified in CLA resulted to be deeply implicated in neurodegenerative (i.e., sirtuin 2, protein disulfide-isomerase 3, transketolase) and psychiatric (i.e., copine 3 and myelin basic protein) disorders in humans. Metascape analysis of differentially expressed proteins in CLA vs PU comparison suggested activation of the α-synuclein pathway and L1 recycling pathway corroborating the involvement of these anatomical structures in neurodegenerative diseases. The expression of calcium/calmodulin-dependent protein kinase and dihydropyrimidinase like 2, which are linked to these pathways, was validated using western blot analysis. Moreover, the protein data set of CLA vs PU comparison was analyzed by Ingenuity Pathways Analysis to obtain a prediction of most significant canonical pathways, upstream regulators, human diseases, and biological functions. Interestingly, inhibition of presenilin 1 (PSEN1) upstream regulator and activation of endocannabinoid neuronal synapse pathway were observed. In conclusion, this is the first study presenting an extensive proteomic analysis of pig CLA in comparison with adjacent areas, IN and PUT. These results reinforce the common origin of CLA and IN and suggest an interesting involvement of CLA in endocannabinoid circuitry, neurodegenerative, and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
- Interuniversitary Consortium for Engineering and Medicine, COIIM, Campobasso, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Trovatelli M, Spediacci C, Castellano A, Bernardini A, Dini D, Malfassi L, Pieri V, Falini A, Ravasio G, Riva M, Bello L, Brizzola S, Zani DD. Morphometric study of the ventricular indexes in healthy ovine BRAIN using MRI. BMC Vet Res 2022; 18:97. [PMID: 35277171 PMCID: PMC8915498 DOI: 10.1186/s12917-022-03180-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Background Sheep (Ovis aries) have been largely used as animal models in a multitude of specialties in biomedical research. The similarity to human brain anatomy in terms of brain size, skull features, and gyrification index, gives to ovine as a large animal model a better translational value than small animal models in neuroscience. Despite this evidence and the availability of advanced imaging techniques, morphometric brain studies are lacking. We herein present the morphometric ovine brain indexes and anatomical measures developed by two observers in a double-blinded study and validated via an intra- and inter-observer analysis. Results For this retrospective study, T1-weighted Magnetic Resonance Imaging (MRI) scans were performed at 1.5 T on 15 sheep, under general anaesthesia. The animals were female Ovis aries, in the age of 18-24 months. Two observers assessed the scans, twice time each. The statistical analysis of intra-observer and inter-observer agreement was obtained via the Bland-Altman plot and Spearman rank correlation test. The results are as follows (mean ± Standard deviation): Indexes: Bifrontal 0,338 ± 0,032 cm; Bicaudate 0,080 ± 0,012 cm; Evans’ 0,218 ± 0,035 cm; Ventricular 0,241 ± 0,039 cm; Huckman 1693 ± 0,174 cm; Cella Media 0,096 ± 0,037 cm; Third ventricle ratio 0,040 ± 0,007 cm. Anatomical measures: Fourth ventricle length 0,295 ± 0,073 cm; Fourth ventricle width 0,344 ± 0,074 cm; Left lateral ventricle 4175 ± 0,275 cm; Right lateral ventricle 4182 ± 0,269 cm; Frontal horn length 1795 ± 0,303 cm; Interventricular foramen left 1794 ± 0,301 cm; Interventricular foramen right 1,78 ± 0,317 cm. Conclusions The present study provides baseline values of linear indexes of the ventricles in the ovine models. The acquisition of these data contributes to filling the knowledge void on important anatomical and morphological features of the sheep brain.
Collapse
|
7
|
Desantis S, Minervini S, Zallocco L, Cozzi B, Pirone A. Age-Related Changes in the Primary Motor Cortex of Newborn to Adult Domestic Pig Sus scrofa domesticus. Animals (Basel) 2021; 11:2019. [PMID: 34359147 PMCID: PMC8300406 DOI: 10.3390/ani11072019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analyses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR- and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development.
Collapse
Affiliation(s)
- Salvatore Desantis
- Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70010 Valenzano, Italy; (S.D.); (S.M.)
| | - Serena Minervini
- Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70010 Valenzano, Italy; (S.D.); (S.M.)
| | | | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy;
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
8
|
Grandis A, Gardini A, Tagliavia C, Salamanca G, Graïc JM, De Silva M, Bombardi C. Anatomical organization of the lateral cervical nucleus in Artiodactyls. Vet Res Commun 2021; 45:87-99. [PMID: 33866493 PMCID: PMC8373732 DOI: 10.1007/s11259-021-09788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022]
Abstract
The presence of the lateral cervical nucleus (LCN) in different mammals, including humans, has been established in a number of anatomical research works. The LCN receives its afferent inputs from the spinocervical tract, and conveys this somatosensory information to the various brain areas, especially the thalamus. In the present study, the organization of the calf and pig LCN was examined through the use of thionine staining and immunohistochemical methods combined with morphometrical analyses. Specifically, the localization of calbindin-D28k (CB-D28k) and neuronal nitric oxide synthase (nNOS) in the LCN was investigated using the immunoperoxidase method. Calf and pig LCN appear as a clearly defined column of gray matter located in the three cranial segments of the cervical spinal cord. Thionine staining shows that polygonal neurons represent the main cell type in both species. The calf and pig LCN contained CB-D28k-immunoreactive (IR) neurons of varying sizes. Large neurons are probably involved in the generation of the cervicothalamic pathway. Small CB-D28k-IR neurons, on the other hand, could act as local interneurons. The immunoreactivity for nNOS was found to be mainly located in thin neuronal processes that could represent the terminal axonal portion of nNOS-IR found in laminae III e IV. This evidence suggests that nitric oxide (NO) could modulate the synaptic activity of the glutamatergic spinocervical tracts. These findings suggest that the LCN of Artiodactyls might play an important role in the transmission of somatosensory information from the spinal cord to the higher centers of the brain.
Collapse
Affiliation(s)
- Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Anna Gardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|