1
|
Joyce W, He K, Zhang M, Ogunsola S, Wu X, Joseph KT, Bogomolny D, Yu W, Springer MS, Xie J, Signore AV, Campbell KL. Genetic excision of the regulatory cardiac troponin I extension in high-heart rate mammal clades. Science 2024; 385:1466-1471. [PMID: 39325895 DOI: 10.1126/science.adi8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during β-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mengdie Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Samuel Ogunsola
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xini Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Kelvin T Joseph
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Bogomolny
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Jensen B, Chang YH, Bamforth SD, Mohun T, Sedmera D, Bartos M, Anderson RH. The changing morphology of the ventricular walls of mouse and human with increasing gestation. J Anat 2024; 244:1040-1053. [PMID: 38284175 PMCID: PMC11095311 DOI: 10.1111/joa.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Yun Hee Chang
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Simon D. Bamforth
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | | | - David Sedmera
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Institute of Dental Medicine, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert H. Anderson
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| |
Collapse
|
3
|
Jensen B, Salvatori D, Schouten J, Meijborg VMF, Lauridsen H, Agger P. Trabeculations of the porcine and human cardiac ventricles are different in number but similar in total volume. Clin Anat 2024; 37:440-454. [PMID: 38217386 DOI: 10.1002/ca.24135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
An intricate meshwork of trabeculations lines the luminal side of cardiac ventricles. Compaction, a developmental process, is thought to reduce trabeculations by adding them to the neighboring compact wall which is then enlarged. When pig, a plausible cardiac donor for xenotransplantation, is compared to human, the ventricular walls appear to have fewer trabeculations. We hypothesized the trabecular volume is proportionally smaller in pig than in human. Macroscopically, we observed in 16 pig hearts that the ventricular walls harbor few but large trabeculations. Close inspection revealed a high number of tiny trabeculations, a few hundred, within the recesses of the large trabeculations. While tiny, these were still larger than embryonic trabeculations and even when considering their number, the total tally of trabeculations in pig was much fewer than in human. Volumetrics based on high-resolution MRI of additional six pig hearts compared to six human hearts, revealed the left ventricles were not significantly differently trabeculated (21.5 versus 22.8%, respectively), and the porcine right ventricles were only slightly less trabeculated (42.1 vs 49.3%, respectively). We then analyzed volumetrically 10 pig embryonic hearts from gestational day 14-35. The trabecular and compact layer always grew, as did the intertrabecular recesses, in contrast to what compaction predicts. The proportions of the trabecular and compact layers changed substantially, nonetheless, due to differences in their growth rate rather than compaction. In conclusion, processes that affect the trabecular morphology do not necessarily affect the proportion of trabecular-to-compact myocardium and they are then distinct from compaction.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniela Salvatori
- Department of Clinical Sciences, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacobine Schouten
- Department of Clinical Sciences, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Peter Agger
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|