1
|
Pintore R, Hutchinson JR, Bishop PJ, Tsai HP, Houssaye A. The evolution of femoral morphology in giant non-avian theropod dinosaurs. PALEOBIOLOGY 2024; 50:308-329. [PMID: 38846629 PMCID: PMC7616063 DOI: 10.1017/pab.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Theropods are obligate bipedal dinosaurs that appeared 230 million years ago and are still extant as birds. Their history is characterized by extreme variations in body mass, with gigantism evolving convergently between many lineages. However, no quantification of hindlimb functional morphology has shown if these body mass increases led to similar specializations between distinct lineages. Here we studied femoral shape variation across 41 species of theropods (n= 68 specimens) using a high-density 3D geometric morphometric approach. We demonstrated that the heaviest theropods evolved wider epiphyses and a more distally located fourth trochanter, as previously demonstrated in early archosaurs, along with an upturned femoral head and a mediodistal crest that extended proximally along the shaft. Phylogenetically informed analyses highlighted that these traits evolved convergently within six major theropod lineages, regardless of their maximum body mass. Conversely, the most gracile femora were distinct from the rest of the dataset, which we interpret as a femoral specialization to "miniaturization" evolving close to Avialae (bird lineage). Our results support a gradual evolution of known "avian" features, such as the fusion between lesser and greater trochanters and a reduction of the epiphyses' offset, independently from body mass variations, which may relate to a more "avian" type of locomotion (more knee-than hip-driven). The distinction between body mass variations and a more "avian" locomotion is represented by a decoupling in the mediodistal crest morphology, whose biomechanical nature should be studied to better understand the importance of its functional role in gigantism, miniaturization and higher parasagittal abilities.
Collapse
Affiliation(s)
- Romain Pintore
- Mécanismes adaptatifs et évolution (MECADEV) / UMR 7179. CNRS / Muséum National d’Histoire Naturelle, Paris, FR
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
| | | | - Peter J. Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, AU
| | - Henry P. Tsai
- Department of Biology, Southern Connecticut State University, New Haven, USA
| | - Alexandra Houssaye
- Mécanismes adaptatifs et évolution (MECADEV) / UMR 7179. CNRS / Muséum National d’Histoire Naturelle, Paris, FR
| |
Collapse
|
2
|
Moro D, Damke LVS, Müller RT, Kerber L, Pretto FA. An unusually robust specimen attributed to Buriolestes schultzi (Dinosauria: Sauropodomorpha) from the Late Triassic of southern Brazil. Anat Rec (Hoboken) 2024; 307:1025-1059. [PMID: 37725325 DOI: 10.1002/ar.25319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Buriolestes schultzi is a small sauropodomorph dinosaur from Carnian beds (ca., 233 Ma) of southern Brazil. It is one of the earliest members of that lineage and is a key taxon to investigate the initial evolution of Sauropodomorpha. Here, we attribute a new specimen to B. schultzi from Late Triassic of southern Brazil, which represents the first occurrence of the taxon outside the type locality. The new specimen comprises a disarticulated and partial skeleton, including cranial and postcranial elements. It is tentatively regarded as an additional specimen of B. schultzi according to a unique combination of traits (including autapomorphies). Conversely, the new specimen is stouter than the other specimens of B. schultzi, as shown by femoral Robustness Index. Based on femoral circumference, the estimated body mass of the new specimen is approximately 15 kg, which is far higher than the previous estimations for other specimens of B. schultzi (i.e., approximately 7 kg). In fact, the new specimen and some specimens of Eoraptor lunensis and Saturnalia tupiniquim were found to be significantly stouter than coeval sauropodomorphs. Therefore, instead of all being constructed as gracile, the earliest sauropodomorphs experienced an unappreciated intraspecific variation in robustness. This is interesting because more precise data on species body mass are crucial in order to better understand the complex terrestrial ecosystems in which dinosaurs originated.
Collapse
Affiliation(s)
- Débora Moro
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Rio Grande do Sul, Brazil
| | - Lísie Vitória Soares Damke
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Rio Grande do Sul, Brazil
| | - Rodrigo Temp Müller
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Rio Grande do Sul, Brazil
| | - Leonardo Kerber
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Rio Grande do Sul, Brazil
| | - Flávio Augusto Pretto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Müller RT, Garcia MS, Bem FP, Damke LVS, Fonseca AO, Da-Rosa ÁAS. On a skeletally immature individual of Unaysaurus tolentinoi (Dinosauria: Sauropodomorpha) from the upper Triassic of southern Brazil. Anat Rec (Hoboken) 2024; 307:1071-1083. [PMID: 37409690 DOI: 10.1002/ar.25285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
The lineage of sauropodomorph dinosaurs raised some of the most impressive animals that ever walked on Earth. However, the massive titans of the Mesozoic Era originated from far smaller dinosaurs. The Triassic beds from Brazil yielded the earliest part of this evolutionary history. Despite the diverse fossil record of early sauropodomorphs, juvenile specimens, as well as certain species are poorly sampled. This is the case for Unaysaurus tolentinoi, an unaysaurid sauropodomorph from Caturrita Formation (ca. 225 Ma; early Norian, Late Triassic). The holotype and only specimen of U. tolentinoi was excavated from the Água Negra Locality (São Martinho da Serra, Rio Grande do Sul, Brazil) in 1998. More than two decades later, no other fossil vertebrates have been reported from the same fossiliferous site. Here we describe a skeletally immature specimen which was found in association with the holotype of U. tolentinoi. The specimen was discovered after a first-hand examination of the holotype and comprises some isolated vertebrae and elements from the posterior autopodium. According to linear regressions, its metatarsal I is approximately 41.7 mm in length, compared to approximately 75.9 mm in the holotype. The repeated elements and reduced size indicates that it does not belong to the elements originally used to erect U. tolentinoi. Rather, the specimen is assigned to U. tolentinoi by topotypy and shared morphology. In addition to the reduced size, distinct lines of evidence (e.g., neurocentral sutures; bone texture) support its assignment to a skeletally immature individual. In sum, the new material expands the record of U. tolentinoi, and represents an additional juvenile dinosaur from the Caturrita Formation.
Collapse
Affiliation(s)
- Rodrigo T Müller
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maurício S Garcia
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiula P Bem
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lísie V S Damke
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - André O Fonseca
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Átila A S Da-Rosa
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Laboratório de Estratigrafia e Paleobiologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
4
|
Bader C, Delapré A, Houssaye A. Shape variation in the limb long bones of modern elephants reveals adaptations to body mass and habitat. J Anat 2023; 242:806-830. [PMID: 36824051 PMCID: PMC10093169 DOI: 10.1111/joa.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
During evolution, several vertebrate lineages have shown trends towards an increase in mass. Such a trend is associated with physiological and musculoskeletal changes necessary to carry and move an increasingly heavy body. Due to their prominent role in the support and movement of the body, limb long bones are highly affected by these shifts in body mass. Elephants are the heaviest living terrestrial mammals, displaying unique features allowing them to withstand their massive weight, such as the columnarity of their limbs, and as such are crucial to understand the evolution towards high body mass in land mammals. In this study, we investigate the shape variation of the six limb long bones among the modern elephants, Elephas maximus and Loxodonta africana, to understand the effect of body mass and habitat on the external anatomy of the bones. To do so, we use three-dimensional geometric morphometrics (GMMs) and qualitative comparisons to describe the shape variation, at both the intraspecific and interspecific levels. Our results reveal that the two species share similar negative ontogenetic allometric patterns (i.e. becoming stouter with increased length) in their humerus and femur, but not in the other bones: the proximal epiphyses of the stylopod bones develop considerably during growth, while the distal epiphyses, which are involved in load distribution in the elbow and knee joints, are already massive in juveniles. We attribute this pattern to a weight-bearing adaptation already present in young specimens. Among adults of the same species, bone robustness increases with body mass, so that heavier specimens display stouter bones allowing for a better mechanical load distribution. While this robustness variation is significant for the humerus only, all the other bones appear to follow the same pattern. This is particularly visible in the ulna and tibia, but less so in the femur, which suggests that the forelimb and hindlimb adapted differently to high body mass support. Robustness analyses, while significant for the humerus only, suggest more robust long bones in Asian elephants than in African savanna elephants. More specifically, GMMs and qualitative comparisons indicate that three bones are clearly distinct when comparing the two species: in E. maximus the humerus, the ulna and the tibia display enlarged areas of muscular insertions for muscles involved in joint and limb stabilization, as well as in limb rotation. These results suggest a higher limb compliance in Asian elephants, associated with a higher dexterity, which could be linked to their habitat and foraging habits.
Collapse
Affiliation(s)
- Camille Bader
- Département Adaptations du Vivant, UMR 7179, Mécanismes adaptatifs et Évolution (MECADEV) CNRS/Muséum national d'Histoire naturelle, Paris, France
| | - Arnaud Delapré
- UMR 7205, Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Alexandra Houssaye
- Département Adaptations du Vivant, UMR 7179, Mécanismes adaptatifs et Évolution (MECADEV) CNRS/Muséum national d'Histoire naturelle, Paris, France
| |
Collapse
|