1
|
Biswas KB, Kawai Y, Nakagawa S, Kanai K, Kojima H, Masutani T, Oyama M, Iddamalgoda A, Sakamoto K. Artemisia capillaris with two novel active compounds, Kawarayomogin I and II, inhibits HYBID (KIAA1199) expression as well as hyaluronic acid degradation. Sci Rep 2025; 15:2042. [PMID: 39820064 PMCID: PMC11739587 DOI: 10.1038/s41598-025-86320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Hyaluronic acid (HA) is an important component of the skin's extracellular matrix, and its degradation leads to wrinkles. Hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) is the main factor responsible for HA degradation in dermis. This study aimed to identify natural plant materials that can effectively suppress HYBID expression and protect HA from degradation. Screening of various plant extracts was performed for the inhibition of histamine-induced mRNA expression of HYBID in normal human dermal fibroblasts (NHDF). The molecular size distribution of HA was evaluated by incubating fluorescein isothiocyanate (FITC)-labeled large HA (1200-1600 kDa) in NHDF for certain time followed by measuring different sizes of FITC-labeled HA in the cultured medium by HPLC. Among 380 plant extracts, we found that Artemisia capillaris flower extract (ACFE) was the most effective agent in both suppressing HYBID expression as well as protecting large HA from degradation. Subsequent mechanism elucidation studies showed that ACFE epigenetically regulates the expression of HYBID by modulating the expression of a specific miRNA, miR-486-5p, which is known to directly target and inhibit HYBID expression. Our active compound search identified 1-caffeoyl-3-hydroxybutane and 3-caffeoyl-1-hydroxybutane in ACFE as new compounds, which we named Kawarayomogin I and Kawarayomogin II, respectively. This is the first report to show that Artemisia capillaris with two novel active compounds inhibits HYBID expression as well as hyaluronic acid degradation, and therefore, could be used as possible agent for cosmeceutical potential.
Collapse
Affiliation(s)
- Kazal Boron Biswas
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan.
| | - Yuka Kawai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Satoshi Nakagawa
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Kyoko Kanai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Hiroyuki Kojima
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Teruaki Masutani
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Masayoshi Oyama
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu, Japan
| | - Arunasiri Iddamalgoda
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Kotaro Sakamoto
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan.
| |
Collapse
|
2
|
Goh APT, Goh SM, Tow WK, Toh KM, Palanisamy UD, Sundralingam U. Exploring the Role of Herbal Compounds in Skin Aging: A Systematic Review of Topical Approaches. Phytother Res 2025; 39:315-363. [PMID: 39541733 DOI: 10.1002/ptr.8375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Recently, dermatology has increasingly focused on understanding skin aging and exploring novel therapeutic approaches. Despite progress in cosmetic and pharmaceutical research, a significant gap remains in comprehensively understanding the effects and mechanisms of herbal extracts on skin aging. While many studies have examined the bioactivities of herbal compounds in preclinical models, comprehensive human trials have been scarce over the past decade. This review aims to address this gap by synthesizing human trials from the past decade, focusing on the therapeutic effects of herbal extracts on skin aging. The objective is to unravel the mechanisms contributing to skin aging and assess the therapeutic potential of herbal compounds. Following the PRISMA 2020 guideline, a systematic review was performed across OvidMEDLINE, Cochrane Central Register of Controlled Trials, and Embase via Ovid. A meticulous search strategy identified relevant clinical trials. The review highlights the essential role of herbal compounds in skin aging, particularly their antioxidant activity in suppressing the aging process. Analysis of 51 clinical trials offers valuable insights into their diverse effects on skin aging parameters. Herbal compounds are promising alternatives to synthetic products for treating skin aging. Their demonstrated efficacy in mitigating wrinkles, enhancing elasticity, maintaining hydration, and controlling pigmentation underscores their potential in developing antiaging therapeutics. However, further studies are needed to identify specific compounds responsible for these effects and understand their mechanisms. Future directions include conducting large-scale trials, exploring synergies with other ingredients, and optimizing delivery systems for sustainable, effective antiaging therapies.
Collapse
Affiliation(s)
- Asly Poh-Tze Goh
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - She-May Goh
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Wai-Kit Tow
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Kar-Men Toh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Chen L, Shi K, Ditzel N, Qiu W, Figeac F, Nielsen LHD, Tencerova M, Kowal JM, Ding M, Andreasen CM, Andersen TL, Kassem M. KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. Nat Commun 2023; 14:2016. [PMID: 37037828 PMCID: PMC10086002 DOI: 10.1038/s41467-023-37651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Upon transplantation, skeletal stem cells (also known as bone marrow stromal or mesenchymal stem cells) can regulate bone regeneration by producing secreted factors. Here, we identify KIAA1199 as a bone marrow stromal cell-secreted factor in vitro and in vivo. KIAA1199 plasma levels of patients positively correlate with osteoporotic fracture risk and expression levels of KIAA1199 in patient bone marrow stromal cells negatively correlates with their osteogenic differentiation potential. KIAA1199-deficient bone marrow stromal cells exhibit enhanced osteoblast differentiation in vitro and ectopic bone formation in vivo. Consistently, KIAA1199 knockout mice display increased bone mass and biomechanical strength, as well as an increased bone formation rate. They also exhibit accelerated healing of surgically generated bone defects and are protected from ovariectomy-induced bone loss. Mechanistically, KIAA1199 regulates osteogenesis by inhibiting the production of osteopontin by osteoblasts, via integrin-mediated AKT and ERK-MAPK intracellular signaling. Thus, KIAA1199 is a regulator of osteoblast differentiation and bone regeneration and could be targeted for the treatment or management of low bone mass conditions.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Dept. of Pathology and Physiopathology, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
| | - Kaikai Shi
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Weimin Qiu
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Louise Himmelstrup Dreyer Nielsen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Justyna Magdalena Kowal
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | | | | | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Šínová R, Pavlík V, Ondrej M, Velebný V, Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp Dermatol 2021; 31:442-458. [PMID: 34726319 DOI: 10.1111/exd.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Photoaged skin exhibits signs of inflammation, DNA damage and changes in morphology that are visible at the macroscopic and microscopic levels. Photoaging also affects the extracellular matrix (ECM) including hyaluronan (HA), the main polysaccharide component thereof. HA is a structurally simple but biologically complex molecule that serves as a water-retaining component and provides both a scaffold for a number of the proteins of the ECM and the ligand for cellular receptors. The study provides an overview of the literature concerning the changes in HA amount, size and metabolism, and the potential role of HA in photoaging. We also suggest novel HA contributions to photoaging based on our knowledge of the role of HA in other pathological processes, including the senescence and inflammation-triggered ECM reorganization. Moreover, we discuss potential direct or indirect intervention to mitigate photoaging that targets the hyaluronan metabolism, as well as supplementation.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Ondrej
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
6
|
Kaul A, Short WD, Wang X, Keswani SG. Hyaluronidases in Human Diseases. Int J Mol Sci 2021; 22:ijms22063204. [PMID: 33809827 PMCID: PMC8004219 DOI: 10.3390/ijms22063204] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
With the burgeoning interest in hyaluronic acid (HA) in recent years, hyaluronidases (HYALs) have come to light for their role in regulating catabolism of HA and its molecular weight (MW) distribution in various tissues. Of the six hyaluronidase-like gene sequences in the human genome, HYALs 1 and 2 are of particular significance because they are the primary hyaluronidases active in human somatic tissue. Perhaps more importantly, for the sake of this review, they cleave anti-inflammatory and anti-fibrotic high-molecular-weight HA into pro-inflammatory and pro-fibrotic oligosaccharides. With this, HYALs regulate HA degradation and thus the development and progression of various diseases. Given the dearth of literature focusing specifically on HYALs in the past decade, this review seeks to expound their role in human diseases of the skin, heart, kidneys, and more. The review will delve into the molecular mechanisms and pathways of HYALs and discuss current and potential future therapeutic benefits of HYALs as a clinical treatment.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| |
Collapse
|
7
|
Yoshida H, Okada Y. Role of HYBID (Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization), Alias KIAA1199/CEMIP, in Hyaluronan Degradation in Normal and Photoaged Skin. Int J Mol Sci 2019; 20:ijms20225804. [PMID: 31752258 PMCID: PMC6888145 DOI: 10.3390/ijms20225804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
Photoaged skin is characterized clinically by apparent manifestations such as wrinkles and sagging, and histologically by an accumulation of abnormal elastin and a severe loss of collagen fibers in the dermis. Quantitative and qualitative alterations in elastin and collagens are considered to be responsible for the formation of wrinkles and sagging. However, since the integrity of elastin and collagen fibers in the dermis is maintained by their interactions with hyaluronan (HA) and a proteoglycan network structure, HA degradation may be the initial process, prior to the breakdown of the fibrillary components, leading to wrinkles and sagging in photoaged skin. We have recently discovered a new HA-degrading mechanism mediated by HYBID (hyaluronan binding protein involved in hyaluronan depolymerization), alias KIAA1199/CEMIP, in human skin fibroblasts, and examined the implication of HYBID for skin photoaging. In this review, we give an overview of the characteristics of HYBID and its prospective roles in HA turnover in normal skin and excessive HA degradation in photoaged skin. In addition, we describe our data on the inhibition of HYBID activity and expression by plant extracts in skin fibroblasts; and propose novel strategies to prevent or improve photoaging symptoms, such as skin wrinkling, by inhibition of HYBID-mediated HA degradation.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, 3-28, 5-chome, Kotobuki-cho, Odawara-shi, Kanagawa 250-0002, Japan
- Correspondence: (H.Y.); (Y.O.); Tel.: +81-465-34-6116 (H.Y.); +81-3-5800-7531 (Y.O.); Fax: +81-465-34-3037 (H.Y.); +81-3-5800-7532 (Y.O.)
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (H.Y.); (Y.O.); Tel.: +81-465-34-6116 (H.Y.); +81-3-5800-7531 (Y.O.); Fax: +81-465-34-3037 (H.Y.); +81-3-5800-7532 (Y.O.)
| |
Collapse
|