1
|
Choi JY, Boo MY, Boo YC. Can Plant Extracts Help Prevent Hair Loss or Promote Hair Growth? A Review Comparing Their Therapeutic Efficacies, Phytochemical Components, and Modulatory Targets. Molecules 2024; 29:2288. [PMID: 38792149 PMCID: PMC11124163 DOI: 10.3390/molecules29102288] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-β or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Min Young Boo
- Ppeum Clinic Daegu, 39 Dongseong-ro, Jung-gu, Daegu 41937, Republic of Korea;
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Lapivu Co., Ltd., 115 Dongdeok-ro, Jung-gu, Daegu 41940, Republic of Korea
| |
Collapse
|
2
|
Xiao Q, Lu Y, Yao W, Gong C, Jia C, Gao J, Guo J, Qiu T, Jiang Y, Huang M, Chu W, Xu Q, Xu N. Molybdenum nanoparticles as a potential topical medication for alopecia treatment through antioxidant pathways that differ from minoxidil. J Trace Elem Med Biol 2024; 82:127368. [PMID: 38150949 DOI: 10.1016/j.jtemb.2023.127368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Hair loss is a common dermatological condition including various types such as alopecia areata, androgenetic alopecia, etc. Minoxidil is a topical medication used for treating hair loss, which is effective for various types of alopecia. However, minoxidil has limitations in treating hair loss, such as slow onset of action and low efficacy, and it cannot effectively inhibit one of the major pathogenic factors of hair loss - excessive oxidative stress. METHODS Transition metal elements with rapid electron transfer, such as molybdenum, have been extensively studied and applied for inhibiting oxidative stress. We established a mouse model for hair growth and intervened with nano-sized molybdenum, minoxidil, and a combination of both. The physicochemical properties of nano-sized molybdenum enabled it to mediate oxidative stress more quickly. RESULTS The results showed that nano-sized molybdenum can accelerate hair growth, increase the number of local hair follicles, and reduce the expression of oxidative stress-related molecules such as iNOS, COX2, and androgen receptors. The combination of nano-sized molybdenum and minoxidil showed an additive effect in promoting hair growth. CONCLUSION Our findings suggest that nano-sized molybdenum might be a potential topical medication for treating hair loss by inhibiting the oxidative stress pathway. Nano-sized molybdenum, alone or in combination with minoxidil, could be a promising therapeutic approach for patients with hair loss, particularly those who do not respond well to current treatments. Further clinical studies are warranted to confirm the efficacy and safety of this novel treatment.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Wei Yao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - ChengChen Gong
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Jin Gao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Jing Guo
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Tianwen Qiu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Yuyu Jiang
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Minhuan Huang
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Weifang Chu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China
| | - Qiannan Xu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China.
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai 200120, PR China.
| |
Collapse
|
3
|
Petrocelli G, Marrazzo P, Bonsi L, Facchin F, Alviano F, Canaider S. Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties. Life (Basel) 2023; 13:1303. [PMID: 37374085 DOI: 10.3390/life13061303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.
Collapse
Affiliation(s)
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, BO, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| |
Collapse
|
4
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Shukla B, Saxena S, Usmani S, Kushwaha P. Phytochemistry and pharmacological studies of Plumbago zeylanica L.: a medicinal plant review. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00271-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPlumbago zeylanica L. (Plumbaginaceae) commonly known, as chitrak is pharmacologically important plant. Various studies have been undertaken to assess the pharmacological potential of different parts of the plant namely like roots, stem, flower, and leaves as antimicrobial, hepatoprotective, anticancer, antifertility, antiulcer, antifungal and wound healing. The intention of the present review is to deliver a concise account on its ethnobotanical uses, phytochemistry with an in-depth study of its phytoconstituents, facts and prospects of its potential pharmacological activities of this golden plant. An extensive literature survey was undertaken through different online platforms viz. Google Scholar and online databases namely PubMed, Science Direct and Springer. All papers based on traditional medicinal uses and pharmacological properties were included. Sixty three research articles and review articles were found to be apt for inclusion into the review. About 150 articles were retrieved for the purpose. The elaborative results vindicated that Plumbago zeylanica L. holds significant prospects in major health conditions such as diabetes, cardiovascular disorders, ulcer, liver problems, obesity, wound healing, cancer etc.
Collapse
|