1
|
Ma Y, Huang W, Tottori N, Yamanishi Y. Development of Repetitive Mechanical Oscillation Needle-Free Injection through Electrically Induced Microbubbles. CYBORG AND BIONIC SYSTEMS 2025; 6:0225. [PMID: 40110347 PMCID: PMC11919823 DOI: 10.34133/cbsystems.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 03/22/2025] Open
Abstract
We previously developed a novel needle-free reagent injection method based on electrically induced microbubbles. The system generates microbubbles and applies repetitive mechanical oscillation associated with microbubble dynamics to perforate tissue and introduce a reagent. In this paper, we propose improving the reagent injection depth by reflecting the shock wave through microbubble dynamics. Our results show that the developed shock wave reflection method improves the ability of the electrically induced microbubble injection system to introduce a reagent. The method extends the application potential of electrically induced microbubble needle-free injection.
Collapse
Affiliation(s)
- Yibo Ma
- Bio-medical Fluid Engineering Laboratory, Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | | | - Naotomo Tottori
- Bio-medical Fluid Engineering Laboratory, Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | - Yoko Yamanishi
- Bio-medical Fluid Engineering Laboratory, Mechanical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Wang C, Tang X, Jiang C, Zhang Y, Han B, Sun Y, Guo J, Peng H, Wang Z, Wang Y, Zhang J, Zhang Y, Jiang C. Intradermal delivery of SARS-CoV-2 RBD3-Fc mRNA vaccines via a needle-free injection system induces robust immune responses in rats. Front Immunol 2025; 16:1530736. [PMID: 40034698 PMCID: PMC11872709 DOI: 10.3389/fimmu.2025.1530736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Needle-free injection system (NFIS) is easy to operate and can decrease needle phobia. Besides, NFIS can increase the interaction of antigens in a more dispersed manner with immune cell at local injection site, which may improve the immune responses of mRNA vaccines. Although SARS-CoV-2 mRNA vaccines have great success, universal vaccines are urgently needed. Delivering universal mRNA vaccines by NFIS is preferred to combat COVID-19. Methods RBD3-Fc mRNA expressing BA.4, Delta, and prototype RBD, and human IgG Fc with YTE mutation was designed and synthesized. The safety and immune responses of universal RBD3-Fc naked mRNA and mRNA-LNP vaccines delivered intradermally using NFIS (named GV-01) and intramuscularly via needles were evaluated and compared in rats. Results The prime-boost regimen administered by two routes resulted in potent immune responses and intradermal delivery displays comparable or better performance in terms of binding antibodies, neutralizing antibodies and T cell responses. Naked mRNA vaccines were functional, but less effective than mRNA-LNP vaccines. Discussion The above results suggest that RBD3-Fc vaccines are safe and immunogenic and NFIS can be used as an alternative to needles/syringes for the inoculation of mRNA-LNP vaccines to elicit robust systematic immune responses.
Collapse
MESH Headings
- Animals
- Rats
- Injections, Intradermal
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- mRNA Vaccines
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/genetics
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Female
- Rats, Sprague-Dawley
- T-Lymphocytes/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Cenrong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Tang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
| | - Chenghan Jiang
- College of Agriculture, Yanbian University, Yanbian, China
| | - Yu Zhang
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Bo Han
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Yi Sun
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Jianfeng Guo
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Hanyu Peng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zihan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yipeng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Kisakov DN, Karpenko LI, Kisakova LA, Sharabrin SV, Borgoyakova MB, Starostina EV, Taranov OS, Ivleva EK, Pyankov OV, Zaykovskaya AV, Dmitrienko EV, Yakovlev VA, Tigeeva EV, Bauer IA, Krasnikova SI, Rudometova NB, Rudometov AP, Sergeev AA, Ilyichev AA. Jet Injection of Naked mRNA Encoding the RBD of the SARS-CoV-2 Spike Protein Induces a High Level of a Specific Immune Response in Mice. Vaccines (Basel) 2025; 13:65. [PMID: 39852844 PMCID: PMC11769039 DOI: 10.3390/vaccines13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Although mRNA vaccines encapsulated in lipid nanoparticles (LNPs) have demonstrated a safety profile with minimal serious adverse events in clinical trials, there is opportunity to further reduce mRNA reactogenicity. The development of naked mRNA vaccines could improve vaccine tolerability. Naked nucleic acid delivery using the jet injection method may be a solution. Methods: In the first part of the study, the optimal conditions providing low traumatization and high expression of the model mRNA-GFP molecule in the tissues of laboratory animals were determined. Then, we used the selected protocol to immunize BALB/c mice with mRNA-RBD encoding the SARS-CoV-2 receptor-binding domain (RBD). It was demonstrated that mice vaccinated with naked mRNA-RBD developed a high level of specific antibodies with virus-neutralizing activity. The vaccine also induced a strong RBD-specific T-cell response and reduced the viral load in the lungs of the animals after infection with the SARS-CoV-2 virus. The level of immune response in mice immunized with mRNA-RBD using a spring-loaded jet injector was comparable to that in animals immunized with mRNA-RBD encapsulated in LNPs. Results: In this study, the efficacy of an inexpensive, simple, and safe method of mRNA delivery using a spring-loaded jet injector was evaluated and validated. Conclusions: Our findings suggest that the jet injection method may be a possible alternative to LNPs for delivering mRNA vaccines against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Denis N. Kisakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Sergey V. Sharabrin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Elena K. Ivleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (I.A.B.)
| | - Vladimir A. Yakovlev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Elena V. Tigeeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Irina Alekseevna Bauer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (I.A.B.)
| | - Svetlana I. Krasnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Nadezhda B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Artemiy A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (L.I.K.); (L.A.K.); (S.V.S.); (M.B.B.); (E.V.S.); (O.S.T.); (E.K.I.); (O.V.P.); (A.V.Z.); (V.A.Y.); (E.V.T.); (S.I.K.); (N.B.R.); (A.P.R.); (A.A.S.); (A.A.I.)
| |
Collapse
|
4
|
Guan X, Pei Y, Song J. DNA-Based Nonviral Gene Therapy─Challenging but Promising. Mol Pharm 2024; 21:427-453. [PMID: 38198640 DOI: 10.1021/acs.molpharmaceut.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decades, significant progress has been made in utilizing nucleic acids, including DNA and RNA molecules, for therapeutic purposes. For DNA molecules, although various DNA delivery systems have been established, viral vector systems are the go-to choice for large-scale commercial applications. However, viral systems have certain disadvantages such as immune response, limited payload capacity, insertional mutagenesis and pre-existing immunity. In contrast, nonviral systems are less immunogenic, not size limited, safer, and easier for manufacturing compared with viral systems. What's more, nonviral DNA vectors have demonstrated their capacity to mediate specific protein expression in vivo for diverse therapeutic objectives containing a wide range of diseases such as cancer, rare diseases, neurodegenerative diseases, and infectious diseases, yielding promising therapeutic outcomes. However, exogenous plasmid DNA is prone to degrade and has poor immunogenicity in vivo. Thus, various strategies have been developed: (i) designing novel plasmids with special structures, (ii) optimizing plasmid sequences for higher expression, and (iii) developing more efficient nonviral DNA delivery systems. Based on these strategies, many interesting clinical results have been reported. This Review discusses the development of DNA-based nonviral gene therapy, including novel plasmids, nonviral delivery systems, clinical advances, and prospects. These developments hold great potential for enhancing the efficacy and safety of nonviral gene therapy and expanding its applications in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaocai Guan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
5
|
Kim KR, Shin SH, Han HS, Yoo KH, Kim BJ, Choi SY. Successful treatment of facial varicella-zoster scars with a combination of a fractional CO 2 laser and pneumatic injector device. Int J Dermatol 2024; 63:260-261. [PMID: 38093408 DOI: 10.1111/ijd.16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Affiliation(s)
- Ka Ram Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sun Young Choi
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Korea
| |
Collapse
|
6
|
Bik L, Elmzoon I, Wolkerstorfer A, Prens EP, van Doorn MBA. Needle-free electronically controlled jet injection with corticosteroids in recalcitrant keloid scars: a retrospective study and patient survey. Lasers Med Sci 2023; 38:250. [PMID: 37917309 PMCID: PMC10622365 DOI: 10.1007/s10103-023-03891-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2023] [Indexed: 11/04/2023]
Abstract
First-line treatment of keloids consists of intralesional needle injections with corticosteroids, but generally entails multiple painful sessions, resulting in variable clinical outcomes. Novel needle-free jet injectors may facilitate more effective and patient-friendly dermal drug delivery. Here, we evaluated the effectiveness, tolerability and patient satisfaction of intralesional triamcinolone-acetonide (TCA) treatment in recalcitrant keloids using an electronically controlled pneumatic injector (EPI). A retrospective study was conducted in recalcitrant keloid patients with a history of severe pain during needle injections who received three sessions of EPI + TCA. Outcome measures included Patient and Observer Scar Assessment Scale (POSAS), Global Aesthetic Improvement Scale (GAIS), treatment-related pain (NRS), adverse effects, and patient satisfaction (survey). Ten patients with in total 283 keloids were included. The POSAS score significantly improved at follow-up and GAIS was reported as '(very) improved' for all patients. EPI + TCA was well-tolerated with a significantly lower NRS pain score compared to needle + TCA (pilot treatment). Only minor adverse effects occurred, and 90% of patients preferred EPI over needle treatment. EPI + TCA is an effective and tolerable treatment for patients with recalcitrant keloids. The minimal treatment-related pain and high patient satisfaction makes it a promising treatment for patients with needle-phobia and/or severe pain during needle injections.
Collapse
Affiliation(s)
- Liora Bik
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - Ixora Elmzoon
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Dermatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Wolkerstorfer
- Department of Dermatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Errol P Prens
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
7
|
Tian T, Aaron RE, Huang J, Yeung AM, Svensson J, Gentile S, Forbes A, Heinemann L, Seley JJ, Kerr D, Klonoff DC. Lipohypertrophy and Insulin: An Update From the Diabetes Technology Society. J Diabetes Sci Technol 2023; 17:1711-1721. [PMID: 37555266 PMCID: PMC10658672 DOI: 10.1177/19322968231187661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Lipohypertrophy is a common skin complication associated with insulin-treated diabetes. The impact of lipohypertrophy as a contributing factor to suboptimal glycemic control, glucose variability, and hypoglycemia is often under-recognized by health care professionals. In a recent Webinar on April 26, 2023, Diabetes Technology Society asked international experts to provide updates on the latest knowledge related to lipohypertrophy for practicing clinicians and educators, researchers, and industries involved in insulin delivery. A recording of the Webinar is freely available on the Diabetes Technology Society Web site (https://www.diabetestechnology.org/).
Collapse
Affiliation(s)
- Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | | | | | - Jannet Svensson
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Gentile
- Department of Internal Medicine, Campania University “Luigi Vanvitelli,” Naples, Italy
- Diabetes Unit AID Stabia, Nefrocenter Research and Nyx Start-Up, Naples, Italy
| | - Angus Forbes
- Division of Care in Long-term Conditions, King’s College London, London, UK
| | | | - Jane Jeffrie Seley
- Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medicine, New York, NY, USA
| | - David Kerr
- Diabetes Technology Society, Burlingame, CA, USA
| | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
8
|
Wang Q, Zhu Q, Li N. A Scientometric Analysis and Visualization of Scientific Research and Technology Innovation in Needle-free Insulin Injection From 1974 to 2022. Clin Ther 2023; 45:881-888. [PMID: 37516566 DOI: 10.1016/j.clinthera.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Needle-free jet injection has to some extent improved the quality of life of patients with diabetes, but it has not been widely used. Therefore, we analyzed articles, clinical trials, and patents of needle-free insulin injection to (1) perform a systematic and comprehensive analysis of scientific research and technology innovation in needle-free insulin injection during the past 49 years (1974 to 2022) and (2) identify the status of scientific research and technology innovation, their limitations, and future trends. METHODS With a new perspective, we use scientometric tools, including co-word and word frequency analyses, text mining, and cluster network analysis, to provide a scientometric analysis and visualization of articles, clinical trials, and patents related to needle-free insulin injection delivery applications. FINDINGS Patent innovation in this field was more active than clinical research, and clinical research prevailed over basic research. Basic research and clinical trials in this field mainly involved therapy, penetration, tolerability, absorption, and pharmacokinetic properties. Drive mechanisms and needle-free injection devices were the core patent technologies in this field. IMPLICATIONS Although needle-free insulin injection has been under development for decades, its full potential has not yet been reached; needle-free injection technology is still in the growth stage. The field of needleless insulin injection is dominated by patent technology innovation.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinlei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Naishi Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Medical Records, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; WHO Family of International Classifications Collaborating Center of China, Beijing, China.
| |
Collapse
|
9
|
Sutedja EK, Sundani A, Ruchiatan K, Sutedja E. Spring-Powered Needle-Free Injection of Triamcinolone Acetonide and 5-Fluorouracil for Keloid Treatment. Clin Cosmet Investig Dermatol 2023; 16:1659-1665. [PMID: 37396709 PMCID: PMC10314751 DOI: 10.2147/ccid.s415789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Introduction Keloid is an abnormal fibroproliferative healing response characterized by excessive and invasive tissue growth beyond the wound boundaries. The conventional treatment involves injecting drugs such as triamcinolone acetonide (TA), 5-fluorouracil (5-FU), or their combination intralesionally. However, the pain associated with injections often leads to low patient compliance and treatment failure. The spring-powered needle-free injector (NFI) provides an affordable alternative option for drug delivery with reduced pain. Case This case report presents a 69-year-old female patient with a keloid treated using a spring-powered needle-free injector (NFI) for drug delivery. The keloid was assessed using the Vancouver Scar Scale (VSS) and the Patient and Observer Scar Assessment Scale (POSAS). The patient's pain level was measured using the Numeric Pain Rating Scale (NPRS). TA and 5-FU mixed with lidocaine were loaded into the NFI and injected at a dose of 0.1 mL/cm2. The treatment was repeated twice a week. After four sessions, the keloid flattened by 0.5 cm, VSS score decreased from 11 to 10, and POSAS scores decreased from 49 to 43 (observer) and from 50 to 37 (patient). The NPRS during each procedure was 1, indicating minimal pain. Discussion The spring-powered NFI is a simple and cost-effective device that operates based on Hooke's law, producing a high-pressure fluid jet for effective skin penetration. The NFI demonstrated effectiveness in treating keloid lesions, resulting in visible improvement after four treatments. Conclusion The spring-powered NFI offers an affordable and painless alternative to keloid treatment.
Collapse
Affiliation(s)
- Eva Krishna Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Annisa Sundani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Kartika Ruchiatan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Endang Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
10
|
Sonoda J, Mizoguchi I, Inoue S, Watanabe A, Sekine A, Yamagishi M, Miyakawa S, Yamaguchi N, Horio E, Katahira Y, Hasegawa H, Hasegawa T, Yamashita K, Yoshimoto T. A Promising Needle-Free Pyro-Drive Jet Injector for Augmentation of Immunity by Intradermal Injection as a Physical Adjuvant. Int J Mol Sci 2023; 24:ijms24109094. [PMID: 37240448 DOI: 10.3390/ijms24109094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.
Collapse
Affiliation(s)
- Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Natsuki Yamaguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Eri Horio
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takashi Hasegawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
11
|
Improved DNA Vaccine Delivery with Needle-Free Injection Systems. Vaccines (Basel) 2023; 11:vaccines11020280. [PMID: 36851159 PMCID: PMC9964240 DOI: 10.3390/vaccines11020280] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.
Collapse
|
12
|
Wu Y, Su Q, Wang C, Du Y, Wang F. Needle-free injection of 5-fluorouracil suggests efficacy and tolerability in the treatment of palmoplantar warts: A randomized clinical trial. J Am Acad Dermatol 2022; 88:1152-1154. [PMID: 36460258 DOI: 10.1016/j.jaad.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yue Wu
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Qianya Su
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Cheng Wang
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Yaxin Du
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Fei Wang
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Inoue S, Mizoguchi I, Sonoda J, Sakamoto E, Katahira Y, Hasegawa H, Watanabe A, Furusaka Y, Xu M, Yoneto T, Sakaguchi N, Terai K, Yamashita K, Yoshimoto T. Induction of potent antitumor immunity by intradermal DNA injection using a novel needle-free pyro-drive jet injector. Cancer Sci 2022; 114:34-47. [PMID: 36000926 PMCID: PMC9807518 DOI: 10.1111/cas.15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 01/07/2023] Open
Abstract
The current success of mRNA vaccines against COVID-19 has highlighted the effectiveness of mRNA and DNA vaccinations. Recently, we demonstrated that a novel needle-free pyro-drive jet injector (PJI) effectively delivers plasmid DNA into the skin, resulting in protein expression higher than that achieved with a needle syringe. Here, we used ovalbumin (OVA) as a model antigen to investigate the potential of the PJI for vaccination against cancers. Intradermal injection of OVA-expression plasmid DNA into mice using the PJI, but not a needle syringe, rapidly and greatly augmented OVA-specific CD8+ T-cell expansion in lymph node cells. Increased mRNA expression of both interferon-γ and interleukin-4 and an enhanced proliferative response of OVA-specific CD8+ T cells, with fewer CD4+ T cells, were also observed. OVA-specific in vivo killing of the target cells and OVA-specific antibody production of both the IgG2a and IgG1 antibody subclasses were greatly augmented. Intradermal injection of OVA-expression plasmid DNA using the PJI showed stronger prophylactic and therapeutic effects against the progression of transplantable OVA-expressing E.G7-OVA tumor cells. Even compared with the most frequently used adjuvants, complete Freund's adjuvant and aluminum hydroxide with OVA protein, intradermal injection of OVA-expression plasmid DNA using the PJI showed a stronger CTL-dependent prophylactic effect. These results suggest that the novel needle-free PJI is a promising tool for DNA vaccination, inducing both a prophylactic and a therapeutic effect against cancers, because of prompt and strong generation of OVA-specific CTLs and subsequently enhanced production of both the IgG2a and IgG1 antibody subclasses.
Collapse
Affiliation(s)
- Shinya Inoue
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Naoki Sakaguchi
- Department of Device Application for Molecular Therapeutics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuhiro Terai
- Department of Device Application for Molecular Therapeutics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| |
Collapse
|
14
|
Design and Analysis: Servo-Tube-Powered Liquid Jet Injector for Drug Delivery Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The current state of commercially available needle-free liquid jet injectors for drug delivery offers no way of controlling the output pressure of the device in real time, as the driving mechanism for these injectors provides a fixed delivery pressure profile. In order to improve the delivery efficiency as well as the precision of the targeted tissue depth, it is necessary to develop a power source that can accurately control the plunger velocity. The duration of a liquid jet injection can vary from 10 to 100 ms, and it generate acceleration greater than 2 g (where g is the gravity); thus, a platform for real-time control must exhibit a response time greater than 1 kHz and good accuracy. Improving the pioneering work by Taberner and others whereby a Lorentz force actuator based upon a voice coil is designed, this study presents a prototype injector system with greater controllability based on the use of a fully closed-loop control system and a classical three-phase linear motor consisting of three fixed coils and multiple permanent magnets. Apart from being capable of generating jets with a required stagnation pressure of 15–16 MPa for skin penetration and liquid injection, as well as reproducing typical injection dynamics using commercially available injectors, the novelty of this proposed platform is that it is proven to be capable of shaping the real-time jet injection pressure profile, including pulsed injection, so that it can later be tailored for more efficient drug delivery.
Collapse
|
15
|
Needle-Free Jet Injectors and Nanosuspensions: Exploring the Potential of an Unexpected Pair. Pharmaceutics 2022; 14:pharmaceutics14051085. [PMID: 35631674 PMCID: PMC9144479 DOI: 10.3390/pharmaceutics14051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Needle-free liquid jet injectors are medical devices used to administer pharmaceutical solutions through the skin. Jet injectors generate a high-speed stream of liquid medication that can puncture the skin and deliver the drug to the underlying tissues. In this work, we investigated the feasibility of using liquid jet injectors to administer nanosuspensions, assessing the impact of the jet injection on their pharmaceutical and physicochemical properties. For this purpose, the model drug diclofenac was used to prepare a set of nanosuspensions, stabilized by poloxamer 188, and equilibrated at different pHs. The hydrodynamic diameter and morphology of the nanocrystals were analyzed before and after the jet injection across porcine skin in vitro, together with the solubility and release kinetics of diclofenac in a simulated subcutaneous environment. The efficacy of the jet injection (i.e., the amount of drug delivered across the skin) was evaluated for the nanosuspension and for a solution, which was used as a control. Finally, the nanosuspension was administered to rats by jet injector, and the plasma profile of diclofenac was evaluated and compared to the one obtained by jet injecting a solution with an equal concentration. The nanosuspension features were maintained after the jet injection in vitro, suggesting that no structural changes occur upon high-speed impact with the skin. Accordingly, in vivo studies demonstrated the feasibility of jet injecting a nanosuspension, reaching relevant plasma concentration of the drug. Overall, needle-free jet injectors proved to be a suitable alternative to conventional syringes for the administration of nanosuspensions.
Collapse
|