1
|
Zhao S, Kong H, Qi D, Qiao Y, Li Y, Cao Z, Wang H, He X, Liu H, Yang H, Gao S, Liu T, Xie J. Epidermal stem cell derived exosomes-induced dedifferentiation of myofibroblasts inhibits scarring via the miR-203a-3p/PIK3CA axis. J Nanobiotechnology 2025; 23:56. [PMID: 39881312 PMCID: PMC11776291 DOI: 10.1186/s12951-025-03157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation. Epidermal stem cell-derived extracellular vesicles (EpiSC-EVs) were isolated via ultracentrifugation and filtration, followed by miRNA sequencing to identify miRNAs targeting key molecules. After in vitro and in vivo treatment with EpiSC-EVs, we assessed antifibrotic effects through scratch assays, collagen contraction assays, Western blotting, and immunofluorescence. Transcriptomic sequencing and rescue experiments were used to investigate the molecular mechanism by which miR-203a-3p in EpiSC-EVs induces myofibroblast dedifferentiation. Our results indicate that PIK3CA is overexpressed in HS tissues and positively correlates with fibrosis. EpiSC-EVs were absorbed by scar-derived fibroblasts, promoting dedifferentiation from myofibroblasts to quiescent fibroblasts. Mechanistically, miR-203a-3p in EpiSC-EVs plays an essential role in inhibiting PIK3CA expression and PI3K/AKT/mTOR pathway hyperactivation, thereby reducing scar formation. In vivo studies confirmed that EpiSC-EVs attenuate excessive scarring through the miR-203a-3p/PIK3CA axis, suggesting EpiSC-EVs as a promising therapeutic approach for HS.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Haoran Kong
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Dahu Qi
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yushuang Qiao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yu Li
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Zhiming Cao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Hanwen Wang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Suyue Gao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Goldie K, Chernoff G, Corduff N, Davies O, van Loghem J, Viscomi B. Consensus Agreements on Regenerative Aesthetics: A Focus on Regenerative Biostimulation With Calcium Hydroxylapatite. Dermatol Surg 2024; 50:S172-S176. [PMID: 39480041 DOI: 10.1097/dss.0000000000004437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND A growing population of patients is seeking treatments that not only affect their overlying features but also restore a more biologically youthful structure and function to the underlying tissue. These strategies are part of what is known as regenerative aesthetics (RA). As an emergent field, clarity regarding the precise definitions and aims of RA and methods to measure the regenerative capacity of RA treatments are lacking. METHODS A panel of 6 multidisciplinary experts discussed the foundational aspects of RA. Consensus statements covered aspects of RA including terminology, goals of treatment, treatment strategies, and biological benchmarks indicating regeneration. Consensus on a statement was defined as ≥75% agreement. RESULTS Panelists emphasized the importance of natural, youthful tissue architecture and function including cellular and extracellular components. Replacement of a single biological component was not considered sufficient for an aesthetic treatment to be described as regenerative. Rather, the relative amounts, ratios, types, and organization are important to determine regenerative potential. Calcium hydroxylapatite is an example of an aesthetic injectable with evidence of regenerative capacity, as demonstrated by its ability to improve collagen type I/III ratios as well as induce the production of elastin and proteoglycans, which ultimately improve measures of skin quality.
Collapse
Affiliation(s)
- Kate Goldie
- Kate Goldie, Clinic 77, London, United Kingdom
| | | | | | - Owen Davies
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | | | | |
Collapse
|
3
|
Kourosh AS, Santiago Mangual KP, Farah RS, Rao M, Hordinsky MK, Arruda S, Sadick N. Platelet-Rich Plasma: Advances and Controversies in Hair Restoration and Skin Rejuvenation. Dermatol Surg 2024; 50:446-452. [PMID: 38376068 DOI: 10.1097/dss.0000000000004115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND Platelet-rich plasma (PRP) and its combined therapeutic modalities have catalyzed new possibilities in dermatology; however, limitations in evidence and lack of consensus remain among clinicians regarding optimal composition, protocol, technique, and application. OBJECTIVE To provide an update and analysis of the evidence for PRP in hair restoration and skin rejuvenation through review of recent available data, highlighting controversies and expert insights to guide future studies, and stimulate discourse and innovations benefitting patients. METHODS A structured review and expert analysis of PubMed publications before October 2023, with a focus on recent literature from January 2020 through October 2023. RESULTS AND CONCLUSION Growing literature supports the utility and benefits of PRP and related autologous products for applications for skin and hair, with strongest evidence for androgenetic alopecia and skin rejuvenation. However, this is limited by lack of consensus regarding best practices and protocols. Randomized, controlled trials with uniform metrics comparing outcomes of various compositions of autologous blood products, preparation methods, dosimetry, and frequency of treatments are still required. This will allow the medical discourse to grow beyond the realm of expert opinion into consensus, standardization, and more wide spread adoption of best practices that will benefit patients.
Collapse
Affiliation(s)
- Arianne Shadi Kourosh
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kathyana P Santiago Mangual
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ronda S Farah
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
- Veteran's Affairs Medical Center, Minneapolis, Minnesota
| | - Medha Rao
- Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Maria K Hordinsky
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | | | - Neil Sadick
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
- Sadick Dermatology, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
4
|
Tang Z, Lu Y, Dong JL, Wu W, Li J. The extracellular vesicles in HIV infection and progression: mechanisms, and theranostic implications. Front Bioeng Biotechnol 2024; 12:1376455. [PMID: 38655385 PMCID: PMC11035885 DOI: 10.3389/fbioe.2024.1376455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Extracellular vesicles (EVs), these minute yet mighty cellular messengers are redefining our understanding of a spectrum of diseases, from cancer to cardiovascular ailments, neurodegenerative disorders, and even infectious diseases like HIV. Central to cellular communication, EVs emerge as both potent facilitators and insightful biomarkers in immune response and the trajectory of disease progression. This review ventures deep into the realm of EVs in HIV-unraveling their pivotal roles in diagnosis, disease mechanism unravelling, and therapeutic innovation. With a focus on HIV, we will highlights the transformative potential of EVs in both diagnosing and treating this formidable virus. Unveiling the intricate dance between EVs and HIV, the review aims to shed light on novel therapeutic strategies that could significantly benefit HIV therapy, potentially even leading to the eradication of HIV.
Collapse
Affiliation(s)
- Zhen Tang
- AIDS Prevention and Control Center of Yichang Third People’s Hospital, Third People’s Hospital Affiliated to Sanxia University, Yichang, Hubei, China
| | - Yao Lu
- Yichang Changyang County People’s Hospital, Yichang, Hubei, China
| | - Jiu-Long Dong
- AIDS Prevention and Control Center of Yichang Third People’s Hospital, Third People’s Hospital Affiliated to Sanxia University, Yichang, Hubei, China
| | - Wen Wu
- AIDS Prevention and Control Center of Yichang Third People’s Hospital, Third People’s Hospital Affiliated to Sanxia University, Yichang, Hubei, China
| | - Jian Li
- AIDS Prevention and Control Center of Yichang Third People’s Hospital, Third People’s Hospital Affiliated to Sanxia University, Yichang, Hubei, China
| |
Collapse
|
5
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
6
|
Trovato F, Ceccarelli S, Michelini S, Vespasiani G, Guida S, Galadari HI, Nisticò SP, Colonna L, Pellacani G. Advancements in Regenerative Medicine for Aesthetic Dermatology: A Comprehensive Review and Future Trends. COSMETICS 2024; 11:49. [DOI: 10.3390/cosmetics11020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The growing interest in maintaining a youthful appearance has encouraged an accelerated development of innovative, minimally invasive aesthetic treatments for facial rejuvenation and regeneration. The close correlation between tissue repair, regeneration, and aging has paved the way for the application of regenerative medicine principles in cosmetic dermatology. The theoretical substrates of regenerative medicine applications in dermo-aesthetics are plentiful. However, regenerative dermatology is an emerging field and needs more data and in vivo trials to reach a consensus on the standardization of methods. In this review, we summarize the principles of regenerative medicine and techniques as they apply to cosmetic dermatology, suggesting unexplored fields and future directions.
Collapse
Affiliation(s)
- Federica Trovato
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Stefano Ceccarelli
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Simone Michelini
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Giordano Vespasiani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Stefania Guida
- Dermatology Department, Vita-Salute San Raffaele University, Via Olgettina n. 60, 20132 Milano, Italy
| | - Hassan Ibrahim Galadari
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Steven Paul Nisticò
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Laura Colonna
- Dermatology Unit, Istituto Dermopatico dell’Immacolata IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| |
Collapse
|
7
|
Yousefian F, Espinoza L, Yadlapati S, Lorenc ZP, Gold M. A comprehensive review of the medical and cosmetic applications of exosomes in dermatology. J Cosmet Dermatol 2024. [PMID: 38226413 DOI: 10.1111/jocd.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Exosomes are a subset of extracellular vesicles that are released by all cell types and are theorized to play a crucial role in intercellular communication. Ranging from 40 to 160 nm in diameter, exosomes contain a variety of genetic materials including DNA, RNA, mRNA, metabolites, proteins, and lipids depending on their cellular origin. AIM Given that intercellular communication is abetted by the exchange of cellular components via exosomes, their applied use can have important implications for disease pathology and exosome-based therapeutics. We provide a comprehensive review of the current application of exosomes in medical (and skin) diseases and in cutaneous medical aesthetics. METHODS A literature search was conducted on PubMed reviewing exosomes and their application in medical and aesthetic fields. RESULTS While the therapeutic use of exosomes in the treatment of medical and cosmetic dermatological procedures is promising, it is also important to note that most studies implementing exosomes as therapeutic agents have been conducted in preclinical models, thus highlighting the need for additional studies and clinical trials. One more important note in the aesthetic world associated with exosomes is that in the United States, at the time of this writing, exosomes may only be topically applied and not injected into the skin, as is done in many countries worldwide. CONCLUSION There is a need for additional studies and clinical trials to evaluate the safety and therapeutic effect and safety of exosomes in medical and aesthetic fields.
Collapse
Affiliation(s)
| | - Liliana Espinoza
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sujitha Yadlapati
- HCA Corpus Christi Medical Center- Bay Area Dermatology Residency Program, McAllen, Texas, USA
| | - Z Paul Lorenc
- Lorenc Aesthetic Plastic Surgery Center, New York, New York, USA
| | - Michael Gold
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
9
|
Cancer-Derived Extracellular Vesicles as Biomarkers for Cutaneous Squamous Cell Carcinoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14205098. [PMID: 36291882 PMCID: PMC9599948 DOI: 10.3390/cancers14205098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Biomarkers including DNA, RNA, and surface-associated proteins in tumor-derived extracellular vesicles promote accurate clinical diagnosis and indicate the prognosis of cancer. In this systematic review, pre-clinical and clinical studies on extracellular vesicles derived from cutaneous squamous cell carcinoma (cSCC-derived EVs) were summarized, for which studies on the genomics, transcriptomics, and proteomics of cSCC-derived EVs were highlighted. The contents in cSCC-derived EVs may reflect the mutational landscape of the original cancer cells or be selectively enriched in extracellular vesicles, as provided by the significant role of target molecules including desmoglein 2 protein (Dsg2), Ct-SLCO1B3 mRNA, CYP24A1 circular RNA (circRNA), long intergenic non-coding RNA (linc-PICSAR) and DNA Copy Number Alteration (CNA). Evidence of these studies implied the diagnostic and therapeutic potential of cSCC-derived EVs for cutaneous squamous cell carcinoma. Abstract Cutaneous squamous cell carcinoma (cSCC) as one of the most prevalent cancers worldwide is associated with significant morbidity and mortality. Full-body skin exam and biopsy is the gold standard for cSCC diagnosis, but it is not always feasible given constraints on time and costs. Furthermore, biopsy fails to reflect the dynamic changes in tumor genomes, which challenges long-term medical treatment in patients with advanced diseases. Extracellular vesicle (EV) is an emerging biological entity in oncology with versatile clinical applications from screening to treatment. In this systematic review, pre-clinical and clinical studies on cSCC-derived EVs were summarized. Seven studies on the genomics, transcriptomics, and proteomics of cSCC-derived EVs were identified. The contents in cSCC-derived EVs may reflect the mutational landscape of the original cancer cells or be selectively enriched in EVs. Desmoglein 2 protein (Dsg2) is an important molecule in the biogenesis of cSCC-derived EVs. Ct-SLCO1B3 mRNA, and CYP24A1 circular RNA (circRNA) are enriched in cSCC-derived EVs, suggesting potentials in cSCC screening and diagnosis. p38 inhibited cSCC-associated long intergenic non-coding RNA (linc-PICSAR) and Dsg2 involved in EV-mediated tumor invasion and drug resistance served as prognostic and therapeutic predictors. We also proposed future directions to devise EV-based cSCC treatment based on these molecules and preliminary studies in other cancers.
Collapse
|