1
|
Lee J, Chadalavada SC, Ghodadra A, Ali A, Arribas EM, Chepelev L, Ionita CN, Ravi P, Ryan JR, Santiago L, Wake N, Sheikh AM, Rybicki FJ, Ballard DH. Clinical situations for which 3D Printing is considered an appropriate representation or extension of data contained in a medical imaging examination: vascular conditions. 3D Print Med 2023; 9:34. [PMID: 38032479 PMCID: PMC10688120 DOI: 10.1186/s41205-023-00196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Medical three-dimensional (3D) printing has demonstrated utility and value in anatomic models for vascular conditions. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (3DPSIG) provides appropriateness recommendations for vascular 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with vascular indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for the following areas: aneurysm, dissection, extremity vascular disease, other arterial diseases, acute venous thromboembolic disease, venous disorders, lymphedema, congenital vascular malformations, vascular trauma, vascular tumors, visceral vasculature for surgical planning, dialysis access, vascular research/development and modeling, and other vasculopathy. Recommendations are provided in accordance with strength of evidence of publications corresponding to each vascular condition combined with expert opinion from members of the 3DPSIG. CONCLUSION This consensus appropriateness ratings document, created by the members of the 3DPSIG, provides an updated reference for clinical standards of 3D printing for the care of patients with vascular conditions.
Collapse
Affiliation(s)
- Joonhyuk Lee
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | - Anish Ghodadra
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arafat Ali
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - Elsa M Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonid Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ciprian N Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Justin R Ryan
- Webster Foundation 3D Innovations Lab, Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego Health, San Diego, CA, USA
| | - Lumarie Santiago
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Adnan M Sheikh
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Frank J Rybicki
- Department of Radiology, University of Arizona - Phoenix, Phoenix, AZ, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Ganapathy A, Chen D, Elumalai A, Albers B, Tappa K, Jammalamadaka U, Hoegger MJ, Ballard DH. Guide for starting or optimizing a 3D printing clinical service. Methods 2022; 206:41-52. [PMID: 35964862 DOI: 10.1016/j.ymeth.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Three-dimensional (3D) printing has applications in many fields and has gained substantial traction in medicine as a modality to transform two-dimensional scans into three-dimensional renderings. Patient-specific 3D printed models have direct patient care uses in surgical and procedural specialties, allowing for increased precision and accuracy in developing treatment plans and guiding surgeries. Medical applications include surgical planning, surgical guides, patient and trainee education, and implant fabrication. 3D printing workflow for a laboratory or clinical service that produces anatomic models and guides includes optimizing imaging acquisition and post-processing, segmenting the imaging, and printing the model. Quality assurance considerations include supervising medical imaging expert radiologists' guidance and self-implementing in-house quality control programs. The purpose of this review is to provide a workflow and guide for starting or optimizing laboratories and clinical services that 3D-print anatomic models or guides for clinical use.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Anusha Elumalai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Brian Albers
- 3D Printing Center, Barnes Jewish Hospital, St. Louis, MO, USA.
| | - Karthik Tappa
- Anatomic 3D Printing and Visualization Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - David H Ballard
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
4
|
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2020; 10:biom10111577. [PMID: 33233652 PMCID: PMC7699768 DOI: 10.3390/biom10111577] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.
Collapse
|
5
|
Wang C, Zhang L, Qin T, Xi Z, Sun L, Wu H, Li D. 3D printing in adult cardiovascular surgery and interventions: a systematic review. J Thorac Dis 2020; 12:3227-3237. [PMID: 32642244 PMCID: PMC7330795 DOI: 10.21037/jtd-20-455] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
3D printing in adult cardiac and vascular surgery has been evaluated over the last 10 years, and all of the available literature reports benefits from the use of 3D models. In the present study, we analyzed the current applications of 3D printing for adult cardiovascular disease treated with surgical or catheter-based interventions, including the clinical medical simulation of physiological or pathology conducted with 3D printing in this field. A search of PubMed and MEDLINE databases were supplemented by searching through bibliographies of key articles. Thereafter, data on demographic, clinical scenarios and application, imaging modality, purposes of using with 3D printing, outcomes and follow-up were extracted. A total of 43 articles were deemed eligible and included. 296 patients (mean age: 65.4±14.2 years; male, 58.2%) received 3D printing for cardiac and vascular surgery or conditions [percutaneous left atrial appendage occlusion (LAAO), TAVR, mitral valve disease, aortic valve replacement, coronary artery abnormality, HOCM, aortic aneurysm and aortic dissection, Kommerell's diverticulum, primary cardiac tumor and ventricular aneurysm]. Eight papers reported the utility of 3D printing in the medical simulator and training fields. Most studies were conducted starting in 2014. Twenty-six was case report. The major scenario used with 3D printing technology was LAAO (50.3%) and followed by TAVR (17.6%). CT and echocardiography were two main imaging techniques that were used to generate 3D-printed heart models. All studies showed that 3D-printed models were helpful for preoperative planning, orientation, and medical teaching. The important finding is that 3D printing provides a unique patient-specific method to assess complex anatomy and is helpful for intraoperative orientation, decision-making, creating functional models, and teaching adult cardiac and vascular surgery, including catheter-based heart surgery.
Collapse
Affiliation(s)
- Changtian Wang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Tao Qin
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Zhilong Xi
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Sun
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Haiwei Wu
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Demin Li
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| |
Collapse
|
6
|
Sun Z. Use of Three-dimensional Printing in the Development of Optimal Cardiac CT Scanning Protocols. Curr Med Imaging 2020; 16:967-977. [PMID: 32107994 DOI: 10.2174/1573405616666200124124140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
7
|
Personalized Three-Dimensional Printed Models in Congenital Heart Disease. J Clin Med 2019; 8:jcm8040522. [PMID: 30995803 PMCID: PMC6517984 DOI: 10.3390/jcm8040522] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Patient-specific three-dimensional (3D) printed models have been increasingly used in cardiology and cardiac surgery, in particular, showing great value in the domain of congenital heart disease (CHD). CHD is characterized by complex cardiac anomalies with disease variations between individuals; thus, it is difficult to obtain comprehensive spatial conceptualization of the cardiac structures based on the current imaging visualizations. 3D printed models derived from patient's cardiac imaging data overcome this limitation by creating personalized 3D heart models, which not only improve spatial visualization, but also assist preoperative planning and simulation of cardiac procedures, serve as a useful tool in medical education and training, and improve doctor-patient communication. This review article provides an overall view of the clinical applications and usefulness of 3D printed models in CHD. Current limitations and future research directions of 3D printed heart models are highlighted.
Collapse
|
8
|
Sun Z. 3D printing in medicine: current applications and future directions. Quant Imaging Med Surg 2018; 8:1069-1077. [PMID: 30701160 PMCID: PMC6328380 DOI: 10.21037/qims.2018.12.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, Santiago L, Ballard DH, Wang KC, Weadock W, Ionita CN, Mitsouras D, Morris J, Matsumoto J, Christensen A, Liacouras P, Rybicki FJ, Sheikh A. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 2018; 4:11. [PMID: 30649688 PMCID: PMC6251945 DOI: 10.1186/s41205-018-0030-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.
Collapse
Affiliation(s)
- Leonid Chepelev
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Nicole Wake
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY USA
- Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY USA
| | | | - Waleed Althobaity
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Ashish Gupta
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Elsa Arribas
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lumarie Santiago
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Kenneth C Wang
- Baltimore VA Medical Center, University of Maryland Medical Center, Baltimore, MD USA
| | - William Weadock
- Department of Radiology and Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI USA
| | - Ciprian N Ionita
- Department of Neurosurgery, State University of New York Buffalo, Buffalo, NY USA
| | - Dimitrios Mitsouras
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | | | | | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Frank J Rybicki
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
10
|
Aurigemma D, Borquez A, Lee J, Newbury R, Moore JW, Lamberti J, Murthy R, El-Said H. Non-anastomotic failure of woven Dacron tube grafts in the thoracic aorta in young adults. J Card Surg 2018; 33:653-657. [PMID: 30199920 DOI: 10.1111/jocs.13805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dacron tube grafts have been used in the surgical management of cardiovascular disease since the 1970s. Complications at the site of the anastomosis have been well described. Non-anastomotic failure is far less common. We present a series of four patients who presented with complications of non-anastomotic failure of woven Dacron tube grafts. METHODS A retrospective chart review of four patients who presented to our institution between March 2014 and March 2017 with clinical complications of a Dacron tube graft was conducted. RESULTS All four patients underwent a staged surgical repair for an interrupted aortic arch between the years of 1988 and 2001. All four patients underwent revision of their original interposition graft (Gore-Tex, W.L. Gore & Associates, Flagstaff, AZ) with implantation of a Hemashield woven Dacron tube graft (Maquet, Rastatt, Germany). From 13 to 22 years postimplant of the Dacron tube graft, all patients presented with symptoms or clinical evidence of primary graft failure. Two patients underwent urgent surgical intervention and did not survive. One patient underwent attempted surgical intervention, which was aborted in the setting of profuse bleeding, and ultimately had an endovascular rescue of the tube graft with a Zenith Alpha endograft (Cook Medical, Bloomington, IN). One patient underwent elective endovascular intervention prior to onset of symptoms. CONCLUSION Non-anastomotic failure of woven Dacron tube grafts can occur in the thoracic aorta in young adults and may be managed with endovascular techniques.
Collapse
Affiliation(s)
- David Aurigemma
- Division of Cardiology, Rady Children's Hospital/UC San Diego, San Diego, California.,Department of Pediatrics, Naval Medical Center San Diego, San Diego, California
| | - Alejandro Borquez
- Division of Cardiology, Rady Children's Hospital/UC San Diego, San Diego, California
| | - Jesse Lee
- Division of Cardiology, Rady Children's Hospital/UC San Diego, San Diego, California
| | - Robert Newbury
- Division of Pathology, Rady Children's Hospital/UC San Diego, San Diego, California
| | - John W Moore
- Division of Cardiology, Rady Children's Hospital/UC San Diego, San Diego, California
| | - John Lamberti
- Division of Cardiovascular Surgery, Rady Children's Hospital/UC San Diego, San Diego, California
| | - Raghav Murthy
- Division of Cardiovascular Surgery, Rady Children's Hospital/UC San Diego, San Diego, California
| | - Howaida El-Said
- Division of Cardiology, Rady Children's Hospital/UC San Diego, San Diego, California
| |
Collapse
|
11
|
Liu RH, Fraser CD, Zhou X, Cameron DE, Vricella LA, Hibino N. Pseudoaneurysm formation after valve sparing root replacement in children with Loeys-Dietz syndrome. J Card Surg 2018; 33:339-343. [DOI: 10.1111/jocs.13709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rui H. Liu
- Division of Cardiac Surgery; The Johns Hopkins Hospital; Baltimore Maryland
| | - Charles D. Fraser
- Division of Cardiac Surgery; The Johns Hopkins Hospital; Baltimore Maryland
| | - Xun Zhou
- Division of Cardiac Surgery; The Johns Hopkins Hospital; Baltimore Maryland
| | - Duke E. Cameron
- Division of Cardiac Surgery; The Massachusetts General Hospital; Boston Massachusetts
| | - Luca A. Vricella
- Division of Cardiac Surgery; The Johns Hopkins Hospital; Baltimore Maryland
| | - Narutoshi Hibino
- Division of Cardiac Surgery; The Johns Hopkins Hospital; Baltimore Maryland
| |
Collapse
|
12
|
Feldman H, Kamali P, Lin SJ, Halamka JD. Clinical 3D printing: A protected health information (PHI) and compliance perspective. Int J Med Inform 2018; 115:18-23. [PMID: 29779716 DOI: 10.1016/j.ijmedinf.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Abstract
Advanced manufacturing techniques such as 3-dimensional (3D) printing, while mature in other industries, are starting to become more commonplace in clinical care. Clinicians are producing physical objects based on patient clinical data for use in planning care and educating patients, all of which should be managed like any other healthcare system data, except it exists in the "real" world. There are currently no provisions in the Health Insurance Portability and Accountability Act (HIPAA) either in its original 1996 form or in more recent updates that address the nature of physical representations of clinical data. We submit that if we define the source data as protected health information (PHI), then the objects 3D printed from that data need to be treated as both (PHI), and if used clinically, part of the clinical record, and propose some basic guidelines for quality and privacy like all documentation until regulatory frameworks can catch up to this technology. Many of the mechanisms designed in the paper and film chart era will work well with 3D printed patient data.
Collapse
Affiliation(s)
- Henry Feldman
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Parisa Kamali
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Samuel J Lin
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John D Halamka
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Masri A, Bianco V, Kilic A, Gleason TG, Sultan I. Failure of CT angiogram to detect an ascending aortic dissection. J Card Surg 2018; 33:194-195. [DOI: 10.1111/jocs.13562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Masri
- Division of Cardiac Surgery, Heart and Vascular Institute; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| | - Valentino Bianco
- Division of Cardiac Surgery, Heart and Vascular Institute; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| | - Arman Kilic
- Division of Cardiac Surgery, Heart and Vascular Institute; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| | - Thomas G. Gleason
- Division of Cardiac Surgery, Heart and Vascular Institute; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| | - Ibrahim Sultan
- Division of Cardiac Surgery, Heart and Vascular Institute; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| |
Collapse
|
14
|
Zhao L, Zhou S, Fan T, Li B, Liang W, Dong H. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. J Card Surg 2018; 33:24-27. [PMID: 29409167 DOI: 10.1111/jocs.13523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess the clinical value of three-dimensional (3D) printing technology for treatment strategies for complex double outlet right ventricle (DORV). METHODS Twenty-five patients with complex double outlet right ventricle were enrolled in this study. The patients were divided into two groups: 3D printing group (eight patients) and a non-3-D printing control group (17 patients). The cardiac images of patients in the 3D printing group were transformed to Digital Imaging and Communications and were segmented and reconstructed to create a heart model. No cardiac models were created in the control group. A Pearson coefficient analysis was used to assess the correlation between measurements of 3D printed models and computed tomography angiography (CTA) data. Pre-operative assessment and planning were performed with 3D printed models, and then operative time and recovery time were compared between the two groups. RESULTS There was good correlation (r = 0.977) between 3D printed models and CTA data. Patients in the 3D printing group had shorter aortic cross-clamp time (102.88 vs 127.76 min, P = 0.094) and cardiopulmonary bypass time (151.63 vs 184.24 min; P = 0.152) than patients in the control group. Patients with 3D printed models had significantly lower mechanical ventilation time (56.43 vs 96.76 h, P = 0.040) and significantly shorter intensive care unit time (99.04 vs 166.94 h, P = 0.008) than patients in the control group. CONCLUSIONS 3D printed models can accurately demonstrate anatomic structures and are useful for pre-operative treatment strategies in DORV.
Collapse
Affiliation(s)
- Liyun Zhao
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Sijie Zhou
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Taibing Fan
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Li
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Liang
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoju Dong
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lazar HL. Three-dimensional printing in cardiac surgery: Enhanced imagery results in enhanced outcomes. J Card Surg 2018; 33:28. [PMID: 29409168 DOI: 10.1111/jocs.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harold L Lazar
- Division of Cardiac Surgery, The Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
16
|
Ballard DH, Trace AP, Ali S, Hodgdon T, Zygmont ME, DeBenedectis CM, Smith SE, Richardson ML, Patel MJ, Decker SJ, Lenchik L. Clinical Applications of 3D Printing: Primer for Radiologists. Acad Radiol 2018; 25:52-65. [PMID: 29030285 DOI: 10.1016/j.acra.2017.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) printing refers to a number of manufacturing technologies that create physical models from digital information. Radiology is poised to advance the application of 3D printing in health care because our specialty has an established history of acquiring and managing the digital information needed to create such models. The 3D Printing Task Force of the Radiology Research Alliance presents a review of the clinical applications of this burgeoning technology, with a focus on the opportunities for radiology. Topics include uses for treatment planning, medical education, and procedural simulation, as well as patient education. Challenges for creating custom implantable devices including financial and regulatory processes for clinical application are reviewed. Precedent procedures that may translate to this new technology are discussed. The task force identifies research opportunities needed to document the value of 3D printing as it relates to patient care.
Collapse
|