1
|
Wullimann D, Sandberg JT, Akber M, Löfling M, Gredmark-Russ S, Michaëlsson J, Buggert M, Blom K, Ljunggren HG. Antigen-specific T cell responses following single and co-administration of tick-borne encephalitis, Japanese encephalitis, and yellow fever virus vaccines: Results from an open-label, non-randomized clinical trial-cohort. PLoS Negl Trop Dis 2025; 19:e0012693. [PMID: 40019865 PMCID: PMC11893121 DOI: 10.1371/journal.pntd.0012693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 02/03/2025] [Indexed: 03/12/2025] Open
Abstract
BACKGROUND Flavivirus infections pose a significant global health burden, highlighting the need for safe and effective vaccination strategies. Co-administration of different vaccines, including licensed flavivirus vaccines, is commonly practiced providing protection against multiple pathogens while also saving time and reducing visits to healthcare units. However, how co-administration of different flavivirus vaccines de facto affects immunogenicity, particularly with respect to T cell responses, is only partially understood. METHODS AND FINDINGS Antigen-specific T cell responses were assessed in study participants enrolled in a previously conducted open-label, non-randomized clinical trial. In the trial, vaccines against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), or yellow fever virus (YFV) were administered either individually or concomitantly in different combinations in healthy study participants. Peripheral blood samples were collected before vaccination and at multiple time points afterward. To analyze antigen-specific CD4+ and CD8+ T cell responses, PBMCs were stimulated with overlapping peptide pools from TBEV, JEV, YFV, and Zika virus (ZIKV) envelope (E), capsid (C), and non-structural protein 5 (NS5) viral antigens. A flow cytometry-based activation-induced marker (AIM) assay was used to quantify antigen-specific T cell responses. The results revealed remarkably similar frequencies of CD4+ and CD8+ T cell responses, regardless of whether vaccines were administered individually or concomitantly. In addition, administering the vaccines in the same or different upper arms did not markedly affect T cell responses. Finally, limited cross-reactivity was observed between the TBEV, JEV, and YFV vaccines, and related ZIKV-specific antigens. CONCLUSIONS TBEV or JEV vaccines can be co-administered with the live attenuated YFV vaccine without any markedly altered antigen-specific CD4+ and CD8+ T cell responses to the respective flaviviruses. Additionally, the vaccines can be delivered in the same or different upper arms without any significant altered influence on the T cell response. From a broader perspective, these results provide valuable insights into the outcome of immune responses following simultaneous administration of different vaccines for different but related pathogens.
Collapse
Affiliation(s)
- David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Löfling
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Sandberg JT, Löfling M, Varnaitė R, Emgård J, Al-Tawil N, Lindquist L, Gredmark-Russ S, Klingström J, Loré K, Blom K, Ljunggren HG. Safety and immunogenicity following co-administration of Yellow fever vaccine with Tick-borne encephalitis or Japanese encephalitis vaccines: Results from an open label, non-randomized clinical trial. PLoS Negl Trop Dis 2023; 17:e0010616. [PMID: 36758067 PMCID: PMC9946270 DOI: 10.1371/journal.pntd.0010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/22/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Flavivirus infections pose a significant global health burden underscoring the need for the development of safe and effective vaccination strategies. Available flavivirus vaccines are from time to time concomitantly delivered to individuals. Co-administration of different vaccines saves time and visits to health care units and vaccine clinics. It serves to provide protection against multiple pathogens in a shorter time-span; e.g., for individuals travelling to different endemic areas. However, safety and immunogenicity-related responses have not been appropriately evaluated upon concomitant delivery of these vaccines. Therefore, we performed an open label, non-randomized clinical trial studying the safety and immunogenicity following concomitant delivery of the yellow fever virus (YFV) vaccine with tick-borne encephalitis virus (TBEV) and Japanese encephalitis virus (JE) virus vaccines. METHODS AND FINDINGS Following screening, healthy study participants were enrolled into different cohorts receiving either TBEV and YFV vaccines, JEV and YFV vaccines, or in control groups receiving only the TBEV, JEV, or YFV vaccine. Concomitant delivery was given in the same or different upper arms for comparison in the co-vaccination cohorts. Adverse effects were recorded throughout the study period and blood samples were taken before and at multiple time-points following vaccination to evaluate immunological responses to the vaccines. Adverse events were predominantly mild in the study groups. Four serious adverse events (SAE) were reported, none of them deemed related to vaccination. The development of neutralizing antibodies (nAbs) against TBEV, JEV, or YFV was not affected by the concomitant vaccination strategy. Concomitant vaccination in the same or different upper arms did not significantly affect safety or immunogenicity-related outcomes. Exploratory studies on immunological effects were additionally performed and included studies of lymphocyte activation, correlates associated with germinal center activation, and plasmablast expansion. CONCLUSIONS Inactivated TBEV or JEV vaccines can be co-administered with the live attenuated YFV vaccine without an increased risk of adverse events and without reduced development of nAbs to the respective viruses. The vaccines can be delivered in the same upper arm without negative outcome. In a broader perspective, the results add valuable information for simultaneous administration of live and inactivated flavivirus vaccines in general. TRIAL REGISTRATION Eudra CT 2017-002137-32.
Collapse
Affiliation(s)
- John Tyler Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marie Löfling
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
3
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
4
|
de Oliveira CS, de Matos HJ, Ramos FLDP, Pinto AYDN, Graim PNDS, Guimarães VDPR, Gomes LTS, Serra EMF, Cruz AC, Leal A, Henriques DF, Lima JA, Anjos MV, Pinto EV, de Souza AW, Vasconcelos PFDC. Risk of Zika virus-associated birth defects in congenital confirmed cases in the Brazilian Amazon. Rev Panam Salud Publica 2020; 44:e116. [PMID: 32952536 PMCID: PMC7491861 DOI: 10.26633/rpsp.2020.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Objective To establish the risk of microcephaly in neonates born to women infected with ZIKV during pregnancy. Methods A cohort of laboratory-confirmed ZIKV cases of congenital infections (109 mothers infected during pregnancy and 101 newborns) among 308 suspect cases was followed in Belem, Pará, Brazil, from October 2015 to December 2017. Results A microcephaly risk of 1.98% (95% CI 0.54-6.93%) was found, or 2 cases among the 101 neonates infected with ZIKV during pregnancy. 72% of the pregnant women had ZIKV infection confirmed by RT-qPCR during gestation. Conclusions Results showed a low incidence of ZIKV-associated birth defects, stillbirth, and miscarriage, which contrasts with previous studies in other Brazilian regions. Previous exposure to yellow fever vaccine and/or multiserotype DENV infection could be implicated in the protection from ZIKV congenital infection.
Collapse
Affiliation(s)
| | - Haroldo José de Matos
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | | | - Ana Yece das N Pinto
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | | | | | - Luna Thaís S Gomes
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Emilene M F Serra
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Ana Cecília Cruz
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Alessandra Leal
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Daniele F Henriques
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Juliana A Lima
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Maura V Anjos
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Eliana V Pinto
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | - Alana W de Souza
- Instituto Evandro Chagas Ananindeua Brazil Instituto Evandro Chagas, Ananindeua, Brazil
| | | |
Collapse
|
5
|
Zika virus: lessons learned in Brazil. Microbes Infect 2018; 20:661-669. [DOI: 10.1016/j.micinf.2018.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 01/07/2023]
|
6
|
Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaëlsson J, Björkström NK, Sandberg JK, Klingström J, Lindquist L, Gredmark Russ S, Ljunggren HG. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front Immunol 2018; 9:2174. [PMID: 30319632 PMCID: PMC6168641 DOI: 10.3389/fimmu.2018.02174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that belongs to the Flaviviridae family. TBEV is transmitted to humans primarily from infected ticks. The virus causes tick-borne encephalitis (TBE), an acute viral disease that affects the central nervous system (CNS). Infection can lead to acute neurological symptoms of significant severity due to meningitis or meningo(myelo)encephalitis. TBE can cause long-term suffering and has been recognized as an increasing public health problem. TBEV-affected areas currently include large parts of central and northern Europe as well as northern Asia. Infection with TBEV triggers a humoral as well as a cell-mediated immune response. In contrast to the well-characterized humoral antibody-mediated response, the cell-mediated immune responses elicited to natural TBEV-infection have been poorly characterized until recently. Here, we review recent progress in our understanding of the cell-mediated immune response to human TBEV-infection. A particular emphasis is devoted to studies of the response mediated by natural killer (NK) cells and CD8 T cells. The studies described include results revealing the temporal dynamics of the T cell- as well as NK cell-responses in relation to disease state and functional characterization of these cells. Additionally, we discuss specific immunopathological aspects of TBEV-infection in the CNS.
Collapse
Affiliation(s)
- Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J. Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Masmejan S, Baud D, Musso D, Panchaud A. Zika virus, vaccines, and antiviral strategies. Expert Rev Anti Infect Ther 2018; 16:471-483. [PMID: 29897831 DOI: 10.1080/14787210.2018.1483239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) recently emerged as a global public health emergency of international concern. ZIKV is responsible for severe neurological complications in adults and infection during pregnancy and can lead to congenital Zika syndrome. There is no licensed vaccine or drug to prevent or treat ZIKV infection. Areas covered: The aim of this article is to provide an overview and update of the progress of research on anti-ZIKV vaccine and medications until the end of 2017, with a special emphasis on drugs that can be used during pregnancy. Expert commentary: Development of new vaccines and drugs is challenging and several points particular to ZIKV infections augment this difficulty: (1) Cross-reactions between ZIKV and other flaviviruses, the impact of ZIKV vaccination on subsequent flavivirus infections, and vice-versa, is unknown, (2) Drugs against ZIKV should be safe in pregnant women, and (3) Evaluation of the efficacy of vaccine and drugs against ZIKV in clinical trials phase II-IV will be complicated due to the decline of ZIKV circulation.
Collapse
Affiliation(s)
- Sophie Masmejan
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - David Baud
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - Didier Musso
- b Director of the Unit of Emerging Infectious Diseases , Institut Louis Malardé , Tahiti , French Polynesia.,c Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection , Marseille , France
| | - Alice Panchaud
- d School of Pharmaceutical Sciences , University of Geneva and Lausanne , Geneva , Switzerland.,e Swiss Teratogen Information Service (STIS) and Division of Clinical Pharmacology, Laboratory Department , University Hospital , Lausanne , Switzerland.,f Pharmacy Service, Laboratory Department , University Hospital Lausanne , Lausanne , Switzerland
| |
Collapse
|
8
|
Zhao M, Zhang H, Liu K, Gao GF, Liu WJ. Human T-cell immunity against the emerging and re-emerging viruses. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1307-1316. [PMID: 29294219 PMCID: PMC7089170 DOI: 10.1007/s11427-017-9241-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022]
Abstract
Over the past decade, we have seen an alarming number of high-profile outbreaks of newly emerging and re-emerging viruses. Recent outbreaks of avian influenza viruses, Middle East respiratory syndrome coronaviruses, Zika virus and Ebola virus present great threats to global health. Considering the pivotal role of host T-cell immunity in the alleviation of symptoms and the clearance of viruses in patients, there are three issues to be primarily concerned about T-cell immunity when a new virus emerges: first, does the population possess pre-existing T-cells against the new virus through previous infections of genetically relevant viruses; second, does a proper immune response arise in the patients to provide protection through an immunopathogenic effect; lastly, how long can the virus-specific immune memory persist. Herein, we summarize the current updates on the characteristics of human T-cell immunological responses against recently emerged or re-emerged viruses, and emphasize the necessity for timely investigation on the T-cell features of these viral diseases, which may provide beneficial recommendations for clinical diagnosis and vaccine development.
Collapse
Affiliation(s)
- Min Zhao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hangjie Zhang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Kefang Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - William J Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|