1
|
Zhang D, Peng J, Zhu Y, Gong Q, Wang Q, Xiang C, Du H, Hu X. Mapping the research landscape of PET/CT in lymphoma: insights from a bibliometric analysis. Front Oncol 2025; 15:1513296. [PMID: 40265016 PMCID: PMC12011559 DOI: 10.3389/fonc.2025.1513296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Objective This study provides a comprehensive bibliometric analysis of research trends in Positron Emission Tomography/Computed Tomography (PET/CT) applications for lymphoma, aiming to identify key contributors, emerging topics, and collaboration patterns within the field. Methods Data from the Web of Science Core Collection (2004-2024) were analyzed. Original articles and reviews in English on PET/CT in lymphoma staging, response assessment, or prognosis were included, while case reports, meeting abstracts, and editorials were excluded. Using CiteSpace, VOSviewer, and Bibliometrix R, we evaluated country/institutional contributions, co-citation networks, keyword trends, and employed linear regression for trend forecasting. Results A total of 2,962 papers related to PET/CT and lymphoma were published during the study period. The annual publication volume increased significantly, peaking in 2021 with 281 papers, followed by a decline to 260 in 2023, potentially linked to COVID-19-related research disruptions. The United States and China led in publication volume, contributing over 40% of global publications. Leading institutions included UNICANCER and Assistance Publique Hôpitaux de Paris. Influential authors such as Sally F. Barrington and Michel Meignan were identified. The European Journal of Nuclear Medicine and Molecular Imaging and the Journal of Nuclear Medicine were the top journals in this field. Key research themes included staging, response assessment, prognosis, and the role of PET/CT in personalized treatment approaches. Conclusion This bibliometric analysis highlights the significant growth and evolving trends in PET/CT research for lymphoma. The findings underscore the critical role of PET/CT in advancing precision medicine, informing future research directions, and optimizing clinical practices in lymphoma management.
Collapse
Affiliation(s)
- Die Zhang
- Department of Neurology, The First Hospital Affiliated of Army Medical University (Southwest Hospital), Chongqing, China
| | - Jianding Peng
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yingjie Zhu
- Department of Nuclear Medicine, The First Hospital Affiliated of Army Medical University (Southwest Hospital), Chongqing, China
| | - Qiang Gong
- Department of Hematology, The First Hospital Affiliated of Army Medical University (Southwest Hospital), Chongqing, China
| | - Qing Wang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chaodong Xiang
- School of Medicine, Chongqing University, Chongqing, China
| | - Hanjian Du
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, The First Hospital Affiliated of Army Medical University (Southwest Hospital), Chongqing, China
| |
Collapse
|
2
|
Ilkkilic K, Sen B, Cure O. The Role of Platelet to Lymphocyte Ratio (PLR) in Predicting Early Treatment Response in Diffuse Large B Cell Lymphoma. Indian J Hematol Blood Transfus 2025; 41:333-339. [PMID: 40224696 PMCID: PMC11992276 DOI: 10.1007/s12288-024-01839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/03/2024] [Indexed: 04/15/2025] Open
Abstract
Background Systemic inflammatory response in diffuse large B-cell lymphoma (DLBCL) is closely related to disease prognosis. Our aim is to determine the role of pretreatment platelet-to-lymphocyte ratio (PLR) in predicting early treatment response in DLBCL patients. Methods This retrospective study included 94 patients. The correlation of PLR at the time of diagnosis with early treatment response was evaluated. Results 66 patients responded to treatment and 28 patients were unresponsive or partially responsive. In univariate analysis, age, eastern cooperative oncology group performance status (ECOG-PS), disease stage, extranodal involvement, neutrophil-to-lymphocyte ratio (NLR), PLR, hemoglobin, albumin, lymphocyte, platelet (HALP) score were found to predict response to treatment. Multivariate analysis revealed that PLR and ECOG-PS were independent predictors of early treatment response. Conclusion PLR can be used by clinicians as an effective, inexpensive inflammatory parameter supplementary to the IPI score to predict early treatment response to chemoimmunotherapy. Treatment of patients with DLBCL with high PLR at the time of diagnosis with more potent regimens may be a rational approach for patients to benefit more from treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01839-2.
Collapse
Affiliation(s)
- Kadir Ilkkilic
- Recep Tayyip Erdogan University School of Medicine, Hematology Department, Rize, Turkey
| | - Bayram Sen
- Recep Tayyip Erdogan University School of Medicine, Biochemistry Department, Rize, Turkey
| | - Osman Cure
- Recep Tayyip Erdogan University School of Medicine, Rheumatology Department, Rize, Turkey
| |
Collapse
|
3
|
Li X, Zhang Y, Mixdorf JC, Wu Q, Lee SJ, Engle JW, Barnhart TE, Kenney SC, Rui L, Wei W, Cai W. Development and Preclinical Evaluation of [ 64Cu]Cu-NOTA-ABDB6: A CD70 and Albumin Dual-Binding Tracer with Improved Pharmacokinetics. J Nucl Med 2025; 66:552-558. [PMID: 40015924 PMCID: PMC11960615 DOI: 10.2967/jnumed.124.268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
CD70 is an emerging biomarker for both solid tumors and hematologic malignancies, highlighting the urgent need for a molecular imaging tracer capable of visualizing CD70 with favorable pharmacokinetics. Methods: ABDB6 was prepared by fusing the albumin-binding domain ABD035 with the CD70-targeting single-domain antibody RCCB6, which we previously reported. The resulting ABDB6 was then conjugated to the bifunctional chelator p-SCN-NOTA and labeled with 64Cu to produce [64Cu]Cu-NOTA-ABDB6. Flow cytometry was used to screen 6 lymphoma cell lines with varying CD70 expression levels. Cell uptake and in vivo immuno-PET imaging studies were conducted to fully evaluate the pharmacokinetic properties and tumor-targeting efficacy of [64Cu]Cu-NOTA-ABDB6. An ABDB6 blocking study was performed to validate the targeting specificity of [64Cu]Cu-NOTA-ABDB6, followed by immunohistochemistry and fluorescent immunostaining studies to correlate tracer uptake with CD70 expression. Results: 64Cu labeling of ABDB6 achieved a high radiochemical yield and specific activity. Significant CD70 expression was observed in 5 lymphoma cell lines (TMD8, HBL1, OCI-LY10, LCL-EBV, and type III latency Burkitt lymphoma [BL] cells) but not in type I latency BL cells, which served as the negative control. [64Cu]Cu-NOTA-ABDB6 exhibited good affinity for CD70 protein at the nanomolar level (inhibitory concentration of 50%, 91.57 nM) and specificity in binding to human CD70. Immuno-PET imaging of [64Cu]Cu-NOTA-ABDB6 demonstrated excellent tumor uptake and retention in various CD70-positive lymphoma models (TMD8, type III latency BL, and LCL-EBV), with the highest tumor uptake values recorded as 24.67 ± 1.36, 18.02 ± 4.29, and 14.68 ± 1.20 percentage injected dose per gram of tissue (%ID/g) at 48 h after injection, respectively. These tumor uptake values were significantly higher than that of the CD70-negative type I latency BL tumor, which had an uptake of 3.59 ± 0.28 %ID/g at the same scanning time point (P < 0.05). In the TMD8 blocking group, tumor uptake was 5.99 ± 1.20 %ID/g at 48 h after injection, significantly lower than in the TMD8 control group (P < 0.01). Both biodistribution and histology results corroborated these imaging findings. Conclusion: [64Cu]Cu-NOTA-ABDB6 immuno-PET effectively visualized varying levels of CD70 in different lymphoma models. Its clinical potential may provide insights into CD70 expression in lymphoma patients.
Collapse
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jason C Mixdorf
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sophia J Lee
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shannon C Kenney
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Lixin Rui
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin; and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
4
|
Zoghi S, Mingels C, Badawi RD, Spencer BA, Yarbrough TL, Nardo L, Chaudhari AJ. Role of Total Body PET/CT in Inflammatory Disorders. Semin Nucl Med 2025; 55:41-51. [PMID: 39578110 PMCID: PMC11645246 DOI: 10.1053/j.semnuclmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Inflammatory disorders historically have been difficult to monitor with conventional PET imaging due to limitations including radiation exposure, lack of validated imaging biomarkers, low spatial resolution, and long acquisition durations. However, the recent development of long-axial field-of-view (LAFOV) PET/CT scanners may allow utilization of novel noninvasive biomarkers to diagnose, predict outcomes, and monitor therapeutic response of inflammatory conditions. LAFOV PET scanners can image most of the human body (if not the entire body) simultaneously in one bed position, with improved signal collection efficiency compared to conventional PET scanners. This allows for imaging with shorter acquisition durations, decreased injected radiotracer dose, prolonged uptake times, or a combination of any of these. In addition, LAFOV PET scanners enable whole-body dynamic imaging. Altogether, these intrinsically superior capabilities in assessing both local and systemic diseases, have allowed these scanners to make increasingly significant contributions to the assessment of inflammatory conditions. This review aims to further explore the role and benefits of LAFOV scanners for imaging various inflammatory conditions while addressing future developments and challenges faced by this technology.
Collapse
Affiliation(s)
- Shervin Zoghi
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Tracy L Yarbrough
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
5
|
Triumbari EKA, Morland D, Gatta R, Boldrini L, De Summa M, Chiesa S, Cuccaro A, Maiolo E, Hohaus S, Annunziata S. The predictive power of 18F-FDG PET/CT two-lesions radiomics and conventional models in classical Hodgkin's Lymphoma: a comparative retrospectively-validated study. Ann Hematol 2025; 104:641-651. [PMID: 39808225 PMCID: PMC11868178 DOI: 10.1007/s00277-025-06190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline 18F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets. Target lesions were: Lesion_A, with largest axial diameter (Dmax); Lesion_B, with highest SUVmax. Total-metabolic-tumor-volume (TMTV) was calculated and 212 radiomic features were extracted. PET/CT features were harmonized using ComBat across two scanners. Outcomes were progression-free-survival (PFS) and Deauville Score at interim PET/CT (DS). For each outcome, three predictive models and their combinations were trained and validated: - radiomic model "R"; - conventional PET/CT model "P"; - clinical model "C". 197 patients were included (training = 118; validation = 79): 38/197 (19%) patients had adverse events and 42/193 (22%) had DS ≥ 4. In the training phase, only one radiomic feature was selected for PFS prediction in model "R" (Lesion_B F_cm.corr, C-index 66.9%). Best "C" model combined stage and IPS (C-index 74.8%), while optimal "P" model combined TMTV and Dmax (C-index 63.3%). After internal validation, "C", "C + R", "R + P" and "C + R + P" significantly predicted PFS. The best validated model was "C + R" (C-index 66.3%). No model was validated for DS prediction. In this large retrospectively-validated study, a combination of baseline 18F-FDG PET/CT two-lesions radiomics and other conventional models showed an added prognostic power in patients with cHL. As single models, conventional clinical parameters maintain their prognostic power, while radiomics or conventional PET/CT alone seem to be sub-optimal to predict survival.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - David Morland
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institut Godinot and CReSTIC EA 3804, Université de Reims Champagne-Ardenne, Reims, France
| | - Roberto Gatta
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luca Boldrini
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco De Summa
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medipass S.p.a. Integrative Service, Rome, Italy
| | - Silvia Chiesa
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annarosa Cuccaro
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Maiolo
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Annunziata
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Radiology, Radiotherapy and Hematology, Unità di Medicina Nucleare, GSTeP Radiopharmacy, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Santamarina MG, Necochea Raffo JA, Lavagnino Contreras G, Recasens Thomas J, Volpacchio M. Predominantly multiple focal non-cystic renal lesions: an imaging approach. Abdom Radiol (NY) 2025; 50:224-260. [PMID: 38913137 DOI: 10.1007/s00261-024-04440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
Multiple non-cystic renal lesions are occasionally discovered during imaging for various reasons and poses a diagnostic challenge to the practicing radiologist. These lesions may appear as a primary or dominant imaging finding or may be an additional abnormality in the setting of multiorgan involvement. Awareness of the imaging appearance of the various entities presenting as renal lesions integrated with associated extrarenal imaging findings along with clinical information is crucial for a proper diagnostic approach and patient work-up. This review summarizes the most relevant causes of infectious, inflammatory, vascular, and neoplastic disorders presenting as predominantly multiple focal non-cystic lesions.
Collapse
Affiliation(s)
- Mario G Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Subida Alesandri S/N., Viña del Mar, Provincia de Valparaíso, Chile.
- Radiology Department, Hospital Dr. Eduardo Pereira, Valparaiso, Chile.
| | - Javier A Necochea Raffo
- Radiology Department, Hospital Naval Almirante Nef, Subida Alesandri S/N., Viña del Mar, Provincia de Valparaíso, Chile
| | | | - Jaime Recasens Thomas
- Departamento de Radiología, Escuela de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Buenos Aires, Argentina
| |
Collapse
|
7
|
Sun Z, Yang T, Ding C, Shi Y, Cheng L, Jia Q, Tao W. Clinical scoring systems, molecular subtypes and baseline [ 18F]FDG PET/CT image analysis for prognosis of diffuse large B-cell lymphoma. Cancer Imaging 2024; 24:168. [PMID: 39696503 DOI: 10.1186/s40644-024-00810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous hematological malignancy resulting in a range of outcomes, and the early prediction of these outcomes has important implications for patient management. Clinical scoring systems provide the most commonly used prognostic evaluation criteria, and the value of genetic testing has also been confirmed by in-depth research on molecular typing. [18F]-fluorodeoxyglucose positron emission tomography / computed tomography ([18F]FDG PET/CT) is an invaluable tool for predicting DLBCL progression. Conventional baseline image-based parameters and machine learning models have been used in prognostic FDG PET/CT studies of DLBCL; however, numerous studies have shown that combinations of baseline clinical scoring systems, molecular subtypes, and parameters and models based on baseline FDG PET/CT image may provide better predictions of patient outcomes and aid clinical decision-making in patients with DLBCL.
Collapse
Affiliation(s)
- Zhuxu Sun
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
8
|
Fisher CM, Capen SF, Bandino JP, Holmes AR, Lee CM. Prominent tissue hemophagocytic lymphohistiocytosis obscuring primary cutaneous gamma/delta (γδ) T-cell lymphoma. J Cutan Pathol 2024; 51:959-963. [PMID: 39295229 DOI: 10.1111/cup.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Primary cutaneous gamma/delta (γδ) T-cell lymphoma (PCGDTCL) is a rare, aggressive malignant neoplasm of γδ T lymphocytes arising within the skin and subcutis. We present a challenging case of PCGDTCL diagnosed in a 35-year-old male soldier who presented with constitutional symptoms, pancytopenia, hemophagocytic lymphohistiocytosis (HLH), disseminated lymphadenopathy, and cutaneous lesions on his extremities and back following a deployment to Iraq and Syria. Histopathologic evaluation of an excisional biopsy showed that PCGDTCL can be focal, localized to the subcutaneous adipose tissue, and obscured by predominant HLH in the surrounding tissues. Pathologists should recognize that the diagnosis of PCGDTCL may be confounded by florid HLH and require multiple biopsies and a comprehensive immunohistochemical panel.
Collapse
Affiliation(s)
- Craig M Fisher
- Department of Dermatology, Wilford Hall Ambulatory Surgical Center, JBSA Lackland, Texas, USA
| | - Steven F Capen
- Department of Pathology and Area Laboratory Services, Brooke Army Medical Center, JBSA-Fort Sam Houston, Texas, USA
| | - Justin P Bandino
- Department of Dermatology, Wilford Hall Ambulatory Surgical Center, JBSA Lackland, Texas, USA
| | - Allen R Holmes
- Department of Pathology and Area Laboratory Services, Brooke Army Medical Center, JBSA-Fort Sam Houston, Texas, USA
| | - Christine M Lee
- Department of Pathology and Area Laboratory Services, Brooke Army Medical Center, JBSA-Fort Sam Houston, Texas, USA
| |
Collapse
|
9
|
Shen L, Young W, Wu M, Xie Y. A Nomogram-Based Prognostic Model for Lymphoma Patients Initially Presenting with Fever of Unknown Origin. J Inflamm Res 2024; 17:8445-8469. [PMID: 39530001 PMCID: PMC11552414 DOI: 10.2147/jir.s493158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Patients with lymphoma who present with fever of unknown origin (FUO) as an initial symptom lack specific clinical feature analysis, prognostic factor analysis, and existing prognostic models. We aim to create a prognostic model for these patients to improve prognosis and risk assessment. Methods A total of 555 lymphoma patients with FUO as initial symptom studied at Huadong Hospital affiliated with Fudan University. Univariable Cox regression identified outcome predictors, analyzed by LASSO Cox. Multifactorial Cox on screened coefficients determined independent prognostic factors and nomogram model. The validity of the nomogram was evaluated through bootstrap sampling, calibration curves for model calibration, time-dependent ROC curve analysis for discrimination assessment, and decision curve analysis for evaluating clinical usefulness. Further validation involved utilizing Kaplan-Meier curves and Log rank tests. Lastly, X-tile software determined the optimal cutoff point for the nomogram score by comparing it with the traditional International Prognostic Index (IPI) scoring system. Results The entire cohort was divided into a training cohort (n=388) and a validation cohort (n=167). These risk factors (cell pathologic type, performance status score, Ann Arbor staging, thrombocytopenia, and raised direct bilirubin) were used to construct a web-based dynamic survival rate calculator for lymphoma patients initially presenting with FUO. The lymphoma-specific nomogram demonstrated good consistency and efficacy in predicting the model's risk stratification. Compared to the IPI scoring system, the nomogram model had higher AUC values for different clinical endpoints. The new nomogram prognostic model showed better differentiation of risk groups compared to traditional IPI scoring. Conclusion Our study developed and validated a prognostic nomogram for lymphoma patients initially presenting with FUO, demonstrating robust predictive efficacy and risk stratification ability. Furthermore, we have successfully implemented this model into a web-based dynamic survival rate calculator.
Collapse
Affiliation(s)
- Lin Shen
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, 200040, People’s Republic of China
| | - Wenjing Young
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, 200040, People’s Republic of China
| | - Min Wu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, 200040, People’s Republic of China
| | - Yanhui Xie
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, 200040, People’s Republic of China
| |
Collapse
|
10
|
Ahmed O, Ordidge K, Hussain T, Syed A, Haroon A, Shahabuddin K. Haemato-radiology: the role of the radiologist at MDT. Br J Radiol 2024; 97:1725-1739. [PMID: 39240353 DOI: 10.1093/bjr/tqae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Haemato-radiology represents a relatively newly emerging, vast, and complex area of diagnostic imaging. Its complexity arises from the multimodality nature of patient assessment, the multisystem presentation of haematological malignancies and their complications, and the volume of imaging required for diagnosis and follow-up of the fifth most common malignancy type in the United Kingdom. Decisive and accurate assessment of disease by radiologists is at the heart of the haemato-oncology multidisciplinary team (MDT) and therefore essential for providing optimal patient care. We hope to support radiologists leading the MDT by streamlining the vast information in this field, emphasizing the most recent, evidence-based guidelines, and internationally accepted criteria for reporting imaging of lymphoma and myeloma. We also cover the various disease and treatment complications frequently presented to the MDT.
Collapse
Affiliation(s)
- Omnya Ahmed
- Department of Radiology, BARTS HEALTH NHS Trust, Whitechapel Road, London, E1 1BB, UK
| | - Katherine Ordidge
- Department of Radiology, BARTS HEALTH NHS Trust, Whitechapel Road, London, E1 1BB, UK
| | - Tahir Hussain
- Department of Radiology, BARTS HEALTH NHS Trust, Whitechapel Road, London, E1 1BB, UK
| | - Adeel Syed
- Department of Radiology, BARTS HEALTH NHS Trust, Whitechapel Road, London, E1 1BB, UK
| | - Athar Haroon
- Department of Radiology, BARTS HEALTH NHS Trust, Whitechapel Road, London, E1 1BB, UK
| | - Khawaja Shahabuddin
- Department of Radiology, BARTS HEALTH NHS Trust, Whitechapel Road, London, E1 1BB, UK
| |
Collapse
|
11
|
Hasanabadi S, Aghamiri SMR, Abin AA, Abdollahi H, Arabi H, Zaidi H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel) 2024; 16:3511. [PMID: 39456604 PMCID: PMC11505665 DOI: 10.3390/cancers16203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
Collapse
Affiliation(s)
- Setareh Hasanabadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Seyed Mahmud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
12
|
Lee I, Byun BH, Kim BI, Choi CW, Kang HJ, Kang CS, Woo SK, Lee KC, Kang JH, Lim I. Evaluating 64 Cu-DOTA-rituximab as a PET agent in patients with B-cell lymphoma: a head-to-head comparison with 18 F-fluorodeoxyglucose PET/computed tomography. Nucl Med Commun 2024; 45:865-873. [PMID: 39155810 DOI: 10.1097/mnm.0000000000001889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
BACKGROUND This study aimed to evaluate the biodistribution of 64 Cu-DOTA-rituximab and its diagnostic feasibility for lymphoma using CD20-targeted 64 Cu-DOTA-rituximab PET/computed tomography (PET/CT). METHODS A prospective study involving six patients diagnosed with lymphoma was conducted between January 2022 and January 2023. These patients underwent 18 F-fluorodeoxyglucose ( 18 F-FDG) and 64 Cu-DOTA-rituximab PET/CT scans. 64 Cu-DOTA-rituximab PET/CT images were acquired at 1, 24, and 48 h after administering 64 Cu-DOTA-rituximab to assess the biodistribution and dosimetry over time. The observed lymph nodes were categorized into specific regions, including cervical and supraclavicular, axillary and infraclavicular, mediastinal, hilar, abdominal paraaortic and retroperitoneal, iliac, mesenteric, and inguinal regions, to compare the diagnostic ability of 18 F-FDG and 64 Cu-DOTA-rituximab PET/CT in detecting lymphoma lesions. Furthermore, the tumor-to-background ratio was calculated and compared with the maximum standardized uptake (SUV max ) of the tumors and the mean standardized uptake (SUV mean ) of normal organs. Internal radiation dosimetry was determined using the OLINDA/EXM software. RESULTS 64 Cu-DOTA-rituximab uptake in lymph nodes associated with lymphoma progressively increased from 1 to 48 h after injection. In contrast, 64 Cu-DOTA-rituximab uptake in normal organs, such as blood, lung, kidney, bladder, muscle, bone, and brain, decreased over time, whereas it increased in the liver and spleen. When it comes to the comparison between 64 Cu-DOTA-rituximab and 18 F-FDG, the SUV max of tumors was higher on 64 Cu-DOTA-rituximab PET/CT (18.1 ± 8.3) than on 18 F-FDG PET/CT (5.2 ± 1.5). Additionally, the tumor-to-background ratio, measured using the SUV mean of normal muscles, was higher on 64 Cu-DOTA-rituximab PET/CT (55.7 ± 31.0) than on 18 F-FDG PET/CT (8.6 ± 2.8). No adverse events related to 64 Cu-DOTA-rituximab injection were reported. CONCLUSION The results of this study demonstrate the feasibility of using 64 Cu-DOTA-rituximab PET/CT to evaluate the CD20 expression. The increased 64 Cu-DOTA-rituximab uptake in lymph nodes associated with tumors, higher SUV max , and tumor-to-muscle ratios observed with 64 Cu-DOTA-rituximab PET/CT compared with 18 F-FDG PET/CT, highlight the diagnostic potential of this imaging modality.
Collapse
Affiliation(s)
| | | | | | | | - Hye Jin Kang
- Division of Hematology/Oncology, Department of Internal Medicine, Korea Cancer Center Hospital and
| | - Chi Soo Kang
- Division of Applied RI, Research Institute of Radiological and Medical Sciences, Korea Institutes of Radiological and Medical Sciences, Seoul, Korea
| | - Sang-Keun Woo
- Division of Applied RI, Research Institute of Radiological and Medical Sciences, Korea Institutes of Radiological and Medical Sciences, Seoul, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Research Institute of Radiological and Medical Sciences, Korea Institutes of Radiological and Medical Sciences, Seoul, Korea
| | - Joo Hyun Kang
- Division of Applied RI, Research Institute of Radiological and Medical Sciences, Korea Institutes of Radiological and Medical Sciences, Seoul, Korea
| | | |
Collapse
|
13
|
Lokre O, Perk TG, Weisman AJ, Govindan RM, Chen S, Chen M, Eickhoff J, Liu G, Jeraj R. Quantitative evaluation of lesion response heterogeneity for superior prognostication of clinical outcome. Eur J Nucl Med Mol Imaging 2024; 51:3505-3517. [PMID: 38819668 PMCID: PMC11445285 DOI: 10.1007/s00259-024-06764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Standardized reporting of treatment response in oncology patients has traditionally relied on methods like RECIST, PERCIST and Deauville score. These endpoints assess only a few lesions, potentially overlooking the response heterogeneity of all disease. This study hypothesizes that comprehensive spatial-temporal evaluation of all individual lesions is necessary for superior prognostication of clinical outcome. METHODS [18F]FDG PET/CT scans from 241 patients (127 diffuse large B-cell lymphoma (DLBCL) and 114 non-small cell lung cancer (NSCLC)) were retrospectively obtained at baseline and either during chemotherapy or post-chemoradiotherapy. An automated TRAQinform IQ software (AIQ Solutions) analyzed the images, performing quantification of change in regions of interest suspicious of cancer (lesion-ROI). Multivariable Cox proportional hazards (CoxPH) models were trained to predict overall survival (OS) with varied sets of quantitative features and lesion-ROI, compared by bootstrapping with C-index and t-tests. The best-fit model was compared to automated versions of previously established methods like RECIST, PERCIST and Deauville score. RESULTS Multivariable CoxPH models demonstrated superior prognostic power when trained with features quantifying response heterogeneity in all individual lesion-ROI in DLBCL (C-index = 0.84, p < 0.001) and NSCLC (C-index = 0.71, p < 0.001). Prognostic power significantly deteriorated (p < 0.001) when using subsets of lesion-ROI (C-index = 0.78 and 0.67 for DLBCL and NSCLC, respectively) or excluding response heterogeneity (C-index = 0.67 and 0.70). RECIST, PERCIST, and Deauville score could not significantly associate with OS (C-index < 0.65 and p > 0.1), performing significantly worse than the multivariable models (p < 0.001). CONCLUSIONS Quantitative evaluation of response heterogeneity of all individual lesions is necessary for the superior prognostication of clinical outcome.
Collapse
Affiliation(s)
- Ojaswita Lokre
- AIQ Solutions, 8000 Excelsior Dr Suite 400, Madison, WI, 53717, United States of America.
| | - Timothy G Perk
- AIQ Solutions, 8000 Excelsior Dr Suite 400, Madison, WI, 53717, United States of America
| | - Amy J Weisman
- AIQ Solutions, 8000 Excelsior Dr Suite 400, Madison, WI, 53717, United States of America
| | | | - Song Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meijie Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jens Eickhoff
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Glenn Liu
- AIQ Solutions, 8000 Excelsior Dr Suite 400, Madison, WI, 53717, United States of America
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Robert Jeraj
- AIQ Solutions, 8000 Excelsior Dr Suite 400, Madison, WI, 53717, United States of America
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
14
|
Boellaard R, Buvat I, Nioche C, Ceriani L, Cottereau AS, Guerra L, Hicks RJ, Kanoun S, Kobe C, Loft A, Schöder H, Versari A, Voltin CA, Zwezerijnen GJC, Zijlstra JM, Mikhaeel NG, Gallamini A, El-Galaly TC, Hanoun C, Chauvie S, Ricci R, Zucca E, Meignan M, Barrington SF. International Benchmark for Total Metabolic Tumor Volume Measurement in Baseline 18F-FDG PET/CT of Lymphoma Patients: A Milestone Toward Clinical Implementation. J Nucl Med 2024; 65:1343-1348. [PMID: 39089812 PMCID: PMC11372260 DOI: 10.2967/jnumed.124.267789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Total metabolic tumor volume (TMTV) is prognostic in lymphoma. However, cutoff values for risk stratification vary markedly, according to the tumor delineation method used. We aimed to create a standardized TMTV benchmark dataset allowing TMTV to be tested and applied as a reproducible biomarker. Methods: Sixty baseline 18F-FDG PET/CT scans were identified with a range of disease distributions (20 follicular, 20 Hodgkin, and 20 diffuse large B-cell lymphoma). TMTV was measured by 12 nuclear medicine experts, each analyzing 20 cases split across subtypes, with each case processed by 3-4 readers. LIFEx or ACCURATE software was chosen according to reader preference. Analysis was performed stepwise: TMTV1 with automated preselection of lesions using an SUV of at least 4 and a volume of at least 3 cm3 with single-click removal of physiologic uptake; TMTV2 with additional removal of reactive bone marrow and spleen with single clicks; TMTV3 with manual editing to remove other physiologic uptake, if required; and TMTV4 with optional addition of lesions using mouse clicks with an SUV of at least 4 (no volume threshold). Results: The final TMTV (TMTV4) ranged from 8 to 2,288 cm3, showing excellent agreement among all readers in 87% of cases (52/60) with a difference of less than 10% or less than 10 cm3 In 70% of the cases, TMTV4 equaled TMTV1, requiring no additional reader interaction. Differences in the TMTV4 were exclusively related to reader interpretation of lesion inclusion or physiologic high-uptake region removal, not to the choice of software. For 5 cases, large TMTV differences (>25%) were due to disagreement about inclusion of diffuse splenic uptake. Conclusion: The proposed segmentation method enabled highly reproducible TMTV measurements, with minimal reader interaction in 70% of the patients. The inclusion or exclusion of diffuse splenic uptake requires definition of specific criteria according to lymphoma subtype. The publicly available proposed benchmark allows comparison of study results and could serve as a reference to test improvements using other segmentation approaches.
Collapse
Affiliation(s)
- Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands;
| | | | | | - Luca Ceriani
- Clinic of Nuclear Medicine and PET-CT Centre, Imaging Institute of Southern Switzerland; and EOC, Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Anne-Ségolène Cottereau
- Department of Nuclear Medicine, Cochin Hospital, APHP; and Faculté de Médecine, Université Paris Cité, Paris, France
| | - Luca Guerra
- Nuclear Medicine Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Rodney J Hicks
- Department of Medicine, St. Vincent's Hospital Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Salim Kanoun
- Centre de Recherche Clinique de Toulouse, Team 9, Toulouse, France
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annika Loft
- PET & Cyclotron Unit 3982, Copenhagen University Hospital, Copenhagen, Denmark
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Annibale Versari
- Nuclear Medicine Department, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - N George Mikhaeel
- Department of Clinical Oncology, Guy's Cancer Centre and School of Cancer and Pharmaceutical Sciences, King's College London University, London, United Kingdom
| | - Andrea Gallamini
- Research and Innovation Department, Antoine Lacassagne Cancer Center, Nice, France
| | - Tarec C El-Galaly
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Christine Hanoun
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephane Chauvie
- Medical Physics Division, Santa Croce e Carle Hospital, Cuneo, Italy
| | - Romain Ricci
- LYSARC, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland; and EOC, Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland; and
| | - Michel Meignan
- Department of Nuclear Medicine, Cochin Hospital, APHP; and Faculté de Médecine, Université Paris Cité, Paris, France
| | - Sally F Barrington
- King's College London and Guy's and St. Thomas's PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
16
|
Zhang H, Liu M, Shi X, Ma J, Ren C, Huang Z, Wang Y, Jing H, Huo L. Feasibility of a deep-inspiration breath-hold [ 18F]AlF-NOTA-LM3 PET/CT imaging on upper-abdominal lesions in NET patients: in comparison with respiratory-gated PET/CT. EJNMMI Phys 2024; 11:75. [PMID: 39207609 PMCID: PMC11362407 DOI: 10.1186/s40658-024-00677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSES To explore the clinical feasibility and efficacy of a deep inspiration breath-hold (BH) PET/CT using [18F]AlF-NOTA-LM3 on upper abdominal lesions in patients with neuroendocrine tumors (NETs). METHODS Twenty-three patients underwent a free-breath (FB) whole-body PET/CT, including a 10 min/bed scan for the upper abdomen with a vital signal monitoring for respiratory gating (RG) followed by a 20-second BH PET/CT covering the same axial range. For the upper abdomen bed, the following PET series was reconstructed: a 2-min FB PET; RG PET (6 bins); a 20-second and 15-second BH PET (BH_15 and BH_20). Semi-quantitative analysis was performed to compare liver SUVmean, lesion SUVmax, MTV, its percentage difference and target-to-background ratio (TBR) between both BH PET and RG PET images. Subgroup analysis considered lesion location, MTV and SUVmax. A 5-point Likert scale was used to perform visual analysis and any missed or additional lesions were identified compared with RG PET. RESULTS Quantitative analysis on overall lesions (n = 78) revealed higher SUVmax and TBR, and smaller MTV for both BH PET compared to FB and RG PET, with lesion location-specific variations. Neither significant difference was observed in all metrics between RG and FB PET in larger lesions, nor in MTV in lower-uptake lesions. However, both BH PET significantly enhanced these measurements. In the visual analysis, both BH PET showed noninferior performance to RG PET, and were evaluated clinically acceptable. Additional and missed lesions were observed in FB and both BH PET compared with RG PET, but didn't alter the clinical management. The BH_15 PET showed comparable performance to BH_20 PET in any comparison. CONCLUSION The BH PET/CT using [18F]AlF-NOTA-LM3 is effective in detecting upper abdominal lesions, offering more accurate quantitative measurements. Using a novel PET/CT scanner, a 15-second BH PET can provide comparable and superior performance to RG PET, indicating potential feasibility in clinical routines.
Collapse
Affiliation(s)
- Haiqiong Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Meixi Liu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ximin Shi
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangyu Ma
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chao Ren
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhenghai Huang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ying Wang
- Central Research Institute, United Imaging Healthcare, Shanghai, 201815, China
| | - Hongli Jing
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
17
|
Zhang S, Wang X, Yang Z, Ding M, Zhang M, Young KH, Zhang X. Minimal residual disease detection in lymphoma: methods, procedures and clinical significance. Front Immunol 2024; 15:1430070. [PMID: 39188727 PMCID: PMC11345172 DOI: 10.3389/fimmu.2024.1430070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Lymphoma is a highly heterogeneous lymphohematopoietic tumor. As our understanding of the biological and pathological characteristics of lymphoma improves, we are identifying an increasing number of lymphoma subtypes. Genotyping has enhanced our ability to diagnose, treat, and monitor the prognosis of lymphoma. Despite significant improvements in treatment effectiveness, traditional methods for assessing disease response and monitoring prognosis are imperfect, and there is no significant improvement in overall remission rates for lymphoma patients. Minimal Residual Disease (MRD) is often indicative of refractory disease or early relapse. For lymphoma patients, personalized MRD monitoring techniques offer an efficient means to estimate disease remission levels, predict early relapse risk, and assess the effectiveness of new drug regimens. In this review, we delve into the MRD procedures in lymphoma, including sample selection and requirements, detection methods and their limitations and advantages, result interpretation. Besides, we also introduce the clinical applications of MRD detection in lymphoma.
Collapse
Affiliation(s)
- Sijun Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Xiangyu Wang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Ken H. Young
- Division of Hematopathology, Duke University Medicine Center, Duke Cancer Institute, Durham, NC, United States
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Wang R, Cai H, Liu C, Lv Z, Ma C. Two Cases of Synchronous Hodgkin Lymphoma and Papillary Thyroid Carcinoma in 18 F-FDG PET/CT. Clin Nucl Med 2024; 49:650-651. [PMID: 38689445 DOI: 10.1097/rlu.0000000000005261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
ABSTRACT The concurrence of Hodgkin lymphoma and papillary thyroid carcinoma is a rare clinical event. Two women presented with a painless mass in the neck that was suspected malignancy by ultrasonography. Both cases shown in the 18 F-FDG PET/CT images demonstrated multiple foci of increased FDG uptake in the neck, mimicking thyroid carcinoma with contralateral cervical lymph node metastases. Unexpectedly, the postoperative pathologies confirmed the thyroid lesion of papillary carcinoma and contralateral cervical lymph nodes of classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Ru Wang
- From the Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Haidong Cai
- From the Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai First People Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- From the Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Chao Ma
- From the Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| |
Collapse
|
19
|
Szidonya L, Mallak N. Inpatient FDG PET/CT: Point-A Strategic Path to Patient-Centered Yet Cost-Effective Care. AJR Am J Roentgenol 2024; 223:e2330585. [PMID: 38197758 DOI: 10.2214/ajr.23.30585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Laszlo Szidonya
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| |
Collapse
|
20
|
Dai L, Fan G, Xie T, Li L, Tang L, Chen H, Shi Y, Han X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark Res 2024; 12:58. [PMID: 38840205 PMCID: PMC11155084 DOI: 10.1186/s40364-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is crucial for developing personalized therapies. METHODS This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified. RESULTS High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077-2.995, p = 0.025 and HR = 2.631, 95% CI: 1.207-5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL. CONCLUSIONS This study underscores the significance of glycolysis in tumor progression and modulation of the immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers and therapeutic targets in DLBCL.
Collapse
Affiliation(s)
- Liyuan Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Zhao J, Guo X, Zheng M, Su L. Meta-analysis on the efficacy of allogeneic hematopoietic stem cell transplantation to treat malignant lymphoma. Open Life Sci 2024; 19:20220771. [PMID: 38840889 PMCID: PMC11151731 DOI: 10.1515/biol-2022-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 06/07/2024] Open
Abstract
The goal of the study involved the comparison of clinical efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and autologous hematopoietic stem cell transplantation (auto-HSCT) in the treatment of malignant lymphoma (ML). The effectiveness of allo-HSCT versus auto-HSCT in the treatment of ML was compared by searching EMBASE, PubMed, Web of Science, and the Cochrane Library for relevant studies. The confidence intervals (CI) and odds ratio (OR) of the article's outcomes were described by a forest plot. Finally, 972 patients in seven articles were included. Overall survival (OS) did not differ significantly between allo-HSCT and auto-HSCT groups (OR = 0.87, 95% CI: 0.66-1.14, P = 0.31). Furthermore, there was no significant difference in adverse reactions (AR) between the two groups (OR = 1.35, 95% CI: 0.81-2.24, P = 0.25). We observed a significant difference in progression-free survival (PFS) between the two groups (OR = 4.14, 95% CI: 2.93-5.35, P < 0.01). There was no evidence of publication bias in this meta-analysis. The incidence of OS and AR differ significantly between allo-HSCT and auto-HSCT, but the PFS was longer in ML patients who received allo-HSCT.
Collapse
Affiliation(s)
- Jin Zhao
- The Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
- Hematology Department of Shanxi Hospital, Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
- Department of Hematology, Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Xiaojing Guo
- The Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
- Hematology Department of Shanxi Hospital, Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
- Department of Hematology, Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Meijing Zheng
- The Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
- Hematology Department of Shanxi Hospital, Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
- Department of Hematology, Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Liping Su
- The Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
- Hematology Department of Shanxi Hospital, Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
- Department of Hematology, Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| |
Collapse
|
22
|
Albano D, Rizzo A, Racca M, Muoio B, Bertagna F, Treglia G. The Diagnostic Performance of 2-[ 18F]FDG PET/CT in Identifying Richter Transformation in Chronic Lymphocytic Leukemia: An Updated Systematic Review and Bivariate Meta-Analysis. Cancers (Basel) 2024; 16:1778. [PMID: 38730730 PMCID: PMC11083202 DOI: 10.3390/cancers16091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Richter transformation is a rare phenomenon characterized by the transformation of cell chronic lymphocytic leukemia (CLL) into a more aggressive lymphoma variant. The early identification of CLLs with a high risk of RT is fundamental. In this field, 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) has been shown to be a non-invasive and promising tool, but apparently, unclear data seem to be present in the literature. This systematic review and bivariate meta-analysis aimed to investigate the diagnostic performance of 2-[18F]FDG PET/CT and its parameters in predicting RT. Between 2006 and 2024, 15 studies were published on this topic, including 1593 CLL patients. Among semiquantitative variables, SUVmax was the most investigated, and the best threshold derived for detecting RT was five. With this cut-off value, a pooled sensitivity of 86.8% (95% CI: 78.5-93.3), a pooled specificity of 48.1% (95% CI: 27-69.9), a pooled negative predictive value of 90.5% (95% CI: 88.4-92.4), a pooled negative likelihood ratio of 0.35 (95% CI: 0.17-0.70), a pooled positive likelihood ratio of 1.8 (95% CI: 1.3-2.4), and a pooled diagnostic odds ratio of 6.7 (3.5-12.5) were obtained. With a higher cut-off (SUVmax = 10), the specificity increased while the sensitivity reduced. The other metabolic features, like metabolic tumor volume, total lesion glycolysis, and radiomic features, were only marginally investigated with controversial evidence.
Collapse
Affiliation(s)
- Domenico Albano
- Nuclear Medicine, University of Brescia and ASST Spedali Civili Brescia, 25123 Brescia, Italy;
| | - Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy; (A.R.); (M.R.)
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy; (A.R.); (M.R.)
| | - Barbara Muoio
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland;
| | - Francesco Bertagna
- Nuclear Medicine, University of Brescia and ASST Spedali Civili Brescia, 25123 Brescia, Italy;
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
23
|
Iftikhar R, Ahmad U, Haider G, Mahmood H, Khan M, Masood M, Anwar N, Javed Q, Sajid N, Tariq R, Mehmod S, Haider J, Abro NA, Shahbaz S, Khokhar A, Khan ZA, Pervez H, Moosajee M, Aziz Z. Real-World Challenges of Managing Diffuse Large B-Cell Lymphoma in a Developing Country. JCO Glob Oncol 2024; 10:e2300386. [PMID: 38603657 DOI: 10.1200/go.23.00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 02/20/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE To highlight challenges and cancer care disparities in patients of diffuse large B-cell lymphoma management in resource-constrained settings. MATERIALS AND METHODS This multicenter retrospective study included 738 patients from 12 public and private sector hematology-oncology centers across Pakistan. Patients were divided into limited-resource and enhanced-resource settings as per national diffuse large B-cell lymphoma (DLBCL) guidelines. RESULTS The median age at diagnosis was 47 years (range, 14-89). Male:female ratio was 2.5:1. Majority of the patients (69.3%) were treated in limited-resource settings. Computed tomography was used as a staging modality in 442 (60%) patients. Limited-stage DLBCL was present in 13.5% of patients, while 86.3% had advanced-stage disease at diagnosis. First-line regimens included rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in 56% and cyclophosphamide, doxorubicin, vincristine, prednisone in 34% of patients, while 10% of patients received palliative regimens upfront. Of evaluable data, complete remission was documented in 299 (74.4%) patients, 39 (9.8%) had partial response and 63 (13.5%) had progressive disease. Disease-free survival (DFS) and overall survival (OS) status were not available for 345 (46.8%) patients at the time of data collection. Overall study cohort had a median follow-up of 2.2 years with a median OS of 3.6 years (95% CI, 3.1 to 4.1), median DFS of 3.1 years (95% CI, 2.6 to 3.6), and a 5-year OS of 40% and DFS of 36%. CONCLUSION Patients from low- and middle-income countries present at an earlier age and have more advanced disease. Patients were frequently lost to follow-up, and record keeping was inadequate more so in patients treated in limited-resource settings. There is a need to establish a national lymphoma registry, improve record keeping, and standardize treatments to ensure improvement in treatment outcomes.
Collapse
Affiliation(s)
- Raheel Iftikhar
- Armed Forces Bone Marrow Transplant Center, Rawalpindi, Pakistan
| | - Usman Ahmad
- Shoukat Khanam Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Ghulam Haider
- Jinnah Post Graduate Medical Centre, Karachi, Pakistan
| | - Humera Mahmood
- Nuclear Medicine, Oncology and Radiotherapy Institute, Rawalpindi, Pakistan
| | - Maryam Khan
- Armed Forces Bone Marrow Transplant Center, Rawalpindi, Pakistan
| | - Misbah Masood
- Institute of Nuclear Medicine and Oncology, Lahore, Pakistan
| | - Nida Anwar
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | | | - Nadia Sajid
- Institute of Nuclear Medicine and Oncology, Lahore, Pakistan
| | - Rija Tariq
- Institute of Nuclear Medicine and Oncology, Lahore, Pakistan
| | - Sana Mehmod
- Nuclear Medicine, Oncology and Radiotherapy Institute, Rawalpindi, Pakistan
| | - Javeria Haider
- Nuclear Medicine, Oncology and Radiotherapy Institute, Rawalpindi, Pakistan
| | | | - Shanzah Shahbaz
- Sheikh Zayed Medical College and Hospital, Rahim Yar Khan, Pakistan
| | | | | | | | | | - Zeba Aziz
- Hameed Latif Hospital, Lahore, Pakistan
| |
Collapse
|
24
|
Berenguer DRF, de Moraes Chaves Becker M, de Oliveira Buril R, Bertão PA, Markman B, Brandão SCS. Progression of Myocardial 18F-FDG Uptake in a Patient with Cardiotoxicity. Arq Bras Cardiol 2024; 121:e20230276. [PMID: 38422307 PMCID: PMC11081128 DOI: 10.36660/abc.20230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 03/02/2024] Open
Abstract
The objective of this case report was to present the progression of chemotherapy-induced cardiotoxicity in a patient with lymphoma, highlighting the importance of myocardial fluor-18-fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography coupled with computed tomography (PET/CT). 43-year-old female patient with uterine lymphoma, who underwent hysterectomy followed by three chemotherapy regimens and radiotherapy. The patient had episodes of acute heart failure two years after chemotherapy. Echocardiogram revealed a reduction in left ventricular ejection fraction (LVEF). A retrospective analysis of 18F-FDG PET/CT showed an increase in myocardial uptake in all tests performed during oncologic treatment. Despite disease remission, the patient developed heart failure with reduced LVEF. During chemotherapy, there was a diffuse, significant increase in myocardial 18F-FDG uptake, which preceded the decrease in myocardial performance and seemed to reflect metabolic changes in cardiomyocytes, related to cardiotoxicity. Would an analysis of myocardial 18F-FDG uptake yield a different cardiac outcome in this patient? This question is relevant, considering that other patients may benefit from the use of PET as an early marker of cardiotoxicity. Imaging tests are essential in the follow-up of patients at risk of cardiotoxicity. Although echocardiography remains the main imaging test in the diagnosis of cardiotoxicity, 18F-FDG PET/CT may be a powerful tool for the early diagnosis of this condition.
Collapse
Affiliation(s)
- Diego Rafael Freitas Berenguer
- Universidade Federal de PernambucoPrograma de pós-graduação em Saúde TranslacionalRecifePEBrasilPrograma de pós-graduação em Saúde Translacional–- Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Monica de Moraes Chaves Becker
- Universidade Federal de PernambucoPrograma de pós-graduação em CirurgiaRecifePEBrasilPrograma de pós-graduação em Cirurgia – Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Roberto de Oliveira Buril
- Universidade Federal de PernambucoPrograma de pós-graduação em CirurgiaRecifePEBrasilPrograma de pós-graduação em Cirurgia – Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Paula Araruna Bertão
- Universidade Federal de PernambucoPrograma de pós-graduação em Saúde TranslacionalRecifePEBrasilPrograma de pós-graduação em Saúde Translacional–- Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Brivaldo Markman
- Universidade Federal de PernambucoPrograma de pós-graduação em Saúde TranslacionalRecifePEBrasilPrograma de pós-graduação em Saúde Translacional–- Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Simone Cristina Soares Brandão
- Universidade Federal de PernambucoPrograma de pós-graduação em CirurgiaRecifePEBrasilPrograma de pós-graduação em Cirurgia – Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| |
Collapse
|
25
|
Wu W, Zhao L, Wang Y, Chen P, Yuan X, Miao L, Zhu Y, Mao J, Cai Z, Ji Y, Wang L, Jia T. Prognostic value of the peripheral blood lymphocyte/monocyte ratio combined with 18F-FDG PET/CT in patients with diffuse large B-cell lymphoma. Curr Probl Cancer 2024; 48:101066. [PMID: 38364336 DOI: 10.1016/j.currproblcancer.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE To explore the prognostic value of the peripheral blood lymphocyte/monocyte ratio (LMR) combined with 18F-FDG PET/CT for diffuse large B-cell lymphoma (DLBCL). METHODS The clinical data of 203 patients with primary DLBCL who were hospitalized to the First People's Hospital of Lianyungang between January 2017 and December 2022 were retrospectively analyzed. Before and after three courses of treatment, PET/CT was performed on forty DLBCL patients. The subject operating characteristic (ROC) curve has been employed to determine the most effective LMR cutoff points. According to the criteria for assessing the efficacy of Lugano lymphoma, the PET/CT findings after 3 courses of treatment were specified as complete remission (CR), partial remission (PR), stable disease (SD) and disease progression (PD). The CR group, PR+SD group, and PD group were the three groups created from the four outcomes. Results were analyzed using the Cox proportional risk model, the Kaplan-Meier method (K-M), and the log-rank test. RESULTS An optimal cutoff point of 3.00 for the LMR in 203 patients was determined by the SPSS 26 software ROC curve. When LMR≥3.00, the 1-year, 3-year, and 5-year OS (Overall Survival) rates are 98%, 88%, and 64% respectively, and the PFS (Progression-free Survival) rates are 90%, 75%, and 56% respectively. When LMR <3.00, the 1-year, 3-year, and 5-year OS rates are 96%, 72%, and 28% respectively, and the PFS rates are 83%, 60%, and 28% respectively. A lower LMR was substantially related with shorter OS, and PFS, according to a K-M survival analysis (P<0.005). LMR<3.00 was an independent predictor of OS, based on a multifactorial Cox analysis (P=0.037). K-M survival analysis of the 18F-FDG PET/CT results of 40 patients revealed that both OS and PFS were statistically significant (P<0.001). Patients were separated into 3 groups combining LMR and 18F-FDG PET/CT: PET/CT CR patients with LMR≥3.00, PET/CT PD patients with LMR<3.00, and others. The Kaplan-Meier analysis revealed that there were significant differences in OS and PFS for each of the three groups (P<0.001). ROC curves showed that the area under the curve (AUC) of the combined testing of the two was 0.735, and the combined testing of the two was better compared to testing alone (PET/CT AUC=0.535, LMR AUC=0.567). This indicates that combining both PET/CT and LMR is a favorable prediction for DLBCL. CONCLUSION A decreased LMR at initial diagnosis suggests an unfavorable prognosis for DLBCL patients; For patients with DLBCL, combining 18F-FDG PET/CT and the LMR has a better predictive value.
Collapse
Affiliation(s)
- Wenke Wu
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Department of Hematology, Postgraduate Training Base of the Lian Yungang First People's Hospital of Jinzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Ying Wang
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Peng Chen
- Department of Nuclear Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Xiaoshuai Yuan
- Department of Nuclear Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Lei Miao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Yuanxin Zhu
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Zhimei Cai
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Yajun Ji
- Department of Oncology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Lei Wang
- Department of Oncology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Tao Jia
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China.
| |
Collapse
|
26
|
Nappi AG, Santo G, Jonghi-Lavarini L, Miceli A, Lazzarato A, La Torre F, Dondi F, Gorica J. Emerging Role of [ 18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematol Rep 2024; 16:32-41. [PMID: 38247994 PMCID: PMC10801569 DOI: 10.3390/hematolrep16010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Fluorine-18 fluorodeoxyglucose ([18F]FDG) is nowadays the leading positron emission tomography (PET) tracer for routine clinical work-ups in hematological malignancies; however, it is limited by false positive findings. Notably, false positives can occur in inflammatory and infective cases or in necrotic tumors that are infiltrated by macrophages and other inflammatory cells. In this context, 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been shown to be a promising imaging biomarker of hematological malignant cell proliferation. In this review, a total of 15 papers were reviewed to collect literature data regarding the clinical application of [18F]FLT PET/CT in hematological malignancies. This imaging modality seems to be a suitable tool for noninvasive assessment of tumor grading, also showing a correlation with Ki-67 immunostaining. Moreover, [18F]FLT PET/CT demonstrated high sensitivity in detecting aggressive lymphoma lesions, especially when applying a standardized uptake value (SUV) cutoff of 3. At baseline, the potential of [18F]FLT imaging as a predictive tool is demonstrated by the low tracer uptake in patients with a complete response. However, its use is limited in evaluating bone diseases due to its high physiological uptake in bone marrow. Interim [18F]FLT PET/CT (iFLT) has the potential to identify high-risk patients with greater precision than [18F]FDG PET/CT, optimizing risk-adapted therapy strategies. Moreover, [18F]FLT uptake showed a greater ability to differentiate tumor from inflammation compared to [18F]FDG, allowing the reduction of false-positive findings and making the first one a more selective tracer. Finally, FLT emerges as a superior independent predictor of PFS and OS compared to FDG and ensures a reliable early response assessment with greater accuracy and predictive value.
Collapse
Affiliation(s)
- Anna Giulia Nappi
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Giulia Santo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzato, Italy;
| | | | - Alberto Miceli
- Nuclear Medicine Unit, Azienda Ospedaliera SS. Antonio E Biagio E Cesare Arrigo, 15121 Alessandria, Italy;
| | | | - Flavia La Torre
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Francesco Dondi
- Nuclear Medicine, ASST Spedali Civili Di Brescia and Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy;
| |
Collapse
|
27
|
Frood R, Willaime JMY, Miles B, Chambers G, Al-Chalabi H, Ali T, Hougham N, Brooks N, Petrides G, Naylor M, Ward D, Sulkin T, Chaytor R, Strouhal P, Patel C, Scarsbrook AF. Comparative effectiveness of standard vs. AI-assisted PET/CT reading workflow for pre-treatment lymphoma staging: a multi-institutional reader study evaluation. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1327186. [PMID: 39355039 PMCID: PMC11440880 DOI: 10.3389/fnume.2023.1327186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Background Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) is widely used for staging high-grade lymphoma, with the time to evaluate such studies varying depending on the complexity of the case. Integrating artificial intelligence (AI) within the reporting workflow has the potential to improve quality and efficiency. The aims of the present study were to evaluate the influence of an integrated research prototype segmentation tool implemented within diagnostic PET/CT reading software on the speed and quality of reporting with variable levels of experience, and to assess the effect of the AI-assisted workflow on reader confidence and whether this tool influenced reporting behaviour. Methods Nine blinded reporters (three trainees, three junior consultants and three senior consultants) from three UK centres participated in a two-part reader study. A total of 15 lymphoma staging PET/CT scans were evaluated twice: first, using a standard PET/CT reporting workflow; then, after a 6-week gap, with AI assistance incorporating pre-segmentation of disease sites within the reading software. An even split of PET/CT segmentations with gold standard (GS), false-positive (FP) over-contour or false-negative (FN) under-contour were provided. The read duration was calculated using file logs, while the report quality was independently assessed by two radiologists with >15 years of experience. Confidence in AI assistance and identification of disease was assessed via online questionnaires for each case. Results There was a significant decrease in time between non-AI and AI-assisted reads (median 15.0 vs. 13.3 min, p < 0.001). Sub-analysis confirmed this was true for both junior (14.5 vs. 12.7 min, p = 0.03) and senior consultants (15.1 vs. 12.2 min, p = 0.03) but not for trainees (18.1 vs. 18.0 min, p = 0.2). There was no significant difference between report quality between reads. AI assistance provided a significant increase in confidence of disease identification (p < 0.001). This held true when splitting the data into FN, GS and FP. In 19/88 cases, participants did not identify either FP (31.8%) or FN (11.4%) segmentations. This was significantly greater for trainees (13/30, 43.3%) than for junior (3/28, 10.7%, p = 0.05) and senior consultants (3/30, 10.0%, p = 0.05). Conclusions The study findings indicate that an AI-assisted workflow achieves comparable performance to humans, demonstrating a marginal enhancement in reporting speed. Less experienced readers were more influenced by segmentation errors. An AI-assisted PET/CT reading workflow has the potential to increase reporting efficiency without adversely affecting quality, which could reduce costs and report turnaround times. These preliminary findings need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Russell Frood
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Leeds Institute of Health Research, University of Leeds, Leeds, United Kingdom
| | | | - Brad Miles
- Alliance Medical Ltd., Warwick, United Kingdom
| | - Greg Chambers
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - H’ssein Al-Chalabi
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Department of Radiology, York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - Tamir Ali
- Department of Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Natasha Hougham
- Department of Radiology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | | | - George Petrides
- Department of Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Matthew Naylor
- Department of Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Daniel Ward
- Department of Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Tom Sulkin
- Department of Radiology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | - Richard Chaytor
- Department of Radiology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | | | - Chirag Patel
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew F. Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Leeds Institute of Health Research, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
28
|
Shangguan C, Yang C, Shi Z, Miao Y, Hai W, Shen Y, Qu Q, Li B, Mi J. 68Ga-FAPI-04 Positron Emission Tomography Distinguishes Malignancy From 18F-FDG-Avid Colorectal Lesions. Int J Radiat Oncol Biol Phys 2024; 118:285-294. [PMID: 37634891 DOI: 10.1016/j.ijrobp.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Lesions with a high uptake of 18F-fluorodeoxyglucose (18F-FDG) on positron emission tomography-computed tomography (PET-CT) can be benign and malignant. New radiotracers, such as the gallium 68 (68Ga)-labeled fibroblast activation protein inhibitor 4 (FAPI-04), could be used to diagnose colorectal carcinoma. This study aimed to evaluate the efficacy of 68Ga-FAPI-04 PET in differentiating benign from malignant 18F-FDG-avid colorectal lesions. METHODS AND MATERIALS An azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal tumor model was developed. Double-tracer 68Ga-FAPI-04 and 18F-FDG PET-CT were applied in the rat model and 22 patients. The PET-CT data were analyzed with enteroscopy, histopathologic observations, immunohistochemistry (IHC) staining, and radioautography results. One hundred seventy-two patients with pathologically confirmed colorectal lesions were enrolled in FAP IHC staining. RESULTS We found that 68Ga-FAPI-04 PET-CT imaging accurately distinguished the malignant from benign inflammatory lesions in an AOM/DSS-induced rat colorectal tumor model. Of 22 patients with gastric cancer but without colorectal carcinoma, 8 had 18F-FDG uptake in the colorectum, but 68Ga-FAPI-04 PET was negative in these sites. An inflammatory lesion or adenoma did not interfere with 68Ga-FAPI-04 PET imaging. Among the 18F-FDG-avid colorectal lesions, 80 of 94 pathologically malignant lesions (85.1%) were FAP-positive, and only 16 of the 78 premalignant or benign lesions (20.5%) had a weak 68Ga-FAPI-04 uptake. CONCLUSIONS 68Ga-FAPI-04 PET-CT could be used to distinguish between benign and malignant 18F-FDG-avid colorectal lesions.
Collapse
Affiliation(s)
- Chengfang Shangguan
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- Department of Otolaryngology & Head and Neck Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaopeng Shi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shen
- Research Center for Experimental Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Qu
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Mi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Feuerecker B, Heimer MM, Geyer T, Fabritius MP, Gu S, Schachtner B, Beyer L, Ricke J, Gatidis S, Ingrisch M, Cyran CC. Artificial Intelligence in Oncological Hybrid Imaging. Nuklearmedizin 2023; 62:296-305. [PMID: 37802057 DOI: 10.1055/a-2157-6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making..
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Partner site Munich, DKTK German Cancer Consortium, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sijing Gu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sergios Gatidis
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
- MPI, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
30
|
Guo SB, Pan DQ, Su N, Huang MQ, Zhou ZZ, Huang WJ, Tian XP. Comprehensive scientometrics and visualization study profiles lymphoma metabolism and identifies its significant research signatures. Front Endocrinol (Lausanne) 2023; 14:1266721. [PMID: 37822596 PMCID: PMC10562636 DOI: 10.3389/fendo.2023.1266721] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND There is a wealth of poorly utilized unstructured data on lymphoma metabolism, and scientometrics and visualization study could serve as a robust tool to address this issue. Hence, it was implemented. METHODS After strict quality control, numerous data regarding the lymphoma metabolism were mined, quantified, cleaned, fused, and visualized from documents (n = 2925) limited from 2013 to 2022 using R packages, VOSviewer, and GraphPad Prism. RESULTS The linear fitting analysis generated functions predicting the annual publication number (y = 31.685x - 63628, R² = 0.93614, Prediction in 2027: 598) and citation number (y = 1363.7x - 2746019, R² = 0.94956, Prediction in 2027: 18201). In the last decade, the most academically performing author, journal, country, and affiliation were Meignan Michel (n = 35), European Journal of Nuclear Medicine and Molecular Imaging (n = 1653), USA (n = 3114), and University of Pennsylvania (n = 86), respectively. The hierarchical clustering based on unsupervised learning further divided research signatures into five clusters, including the basic study cluster (Cluster 1, Total Link Strength [TLS] = 1670, Total Occurrence [TO] = 832) and clinical study cluster (Cluster 3, TLS = 3496, TO = 1328). The timeline distribution indicated that radiomics and artificial intelligence (Cluster 4, Average Publication Year = 2019.39 ± 0.21) is a relatively new research cluster, and more endeavors deserve. Research signature burst and linear regression analysis further confirmed the findings above and revealed additional important results, such as tumor microenvironment (a = 0.6848, R² = 0.5194, p = 0.019) and immunotherapy (a = 1.036, R² = 0.6687, p = 0.004). More interestingly, by performing a "Walktrap" algorithm, the community map indicated that the "apoptosis, metabolism, chemotherapy" (Centrality = 12, Density = 6), "lymphoma, pet/ct, prognosis" (Centrality = 11, Density = 1), and "genotoxicity, mutagenicity" (Centrality = 9, Density = 4) are crucial but still under-explored, illustrating the potentiality of these research signatures in the field of the lymphoma metabolism. CONCLUSION This study comprehensively mines valuable information and offers significant predictions about lymphoma metabolism for its clinical and experimental practice.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Qi Pan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Man-Qian Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen-Zhong Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
31
|
Guo SB, Pan DQ, Su N, Huang MQ, Zhou ZZ, Huang WJ, Tian XP. Comprehensive scientometrics and visualization study profiles lymphoma metabolism and identifies its significant research signatures. Front Endocrinol (Lausanne) 2023; 14. [DOI: pmid: 37822596; doi: 10.3389/fendo.2023.1266721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2025] Open
Abstract
BackgroundThere is a wealth of poorly utilized unstructured data on lymphoma metabolism, and scientometrics and visualization study could serve as a robust tool to address this issue. Hence, it was implemented.MethodsAfter strict quality control, numerous data regarding the lymphoma metabolism were mined, quantified, cleaned, fused, and visualized from documents (n = 2925) limited from 2013 to 2022 using R packages, VOSviewer, and GraphPad Prism.ResultsThe linear fitting analysis generated functions predicting the annual publication number (y = 31.685x - 63628, R² = 0.93614, Prediction in 2027: 598) and citation number (y = 1363.7x - 2746019, R² = 0.94956, Prediction in 2027: 18201). In the last decade, the most academically performing author, journal, country, and affiliation were Meignan Michel (n = 35), European Journal of Nuclear Medicine and Molecular Imaging (n = 1653), USA (n = 3114), and University of Pennsylvania (n = 86), respectively. The hierarchical clustering based on unsupervised learning further divided research signatures into five clusters, including the basic study cluster (Cluster 1, Total Link Strength [TLS] = 1670, Total Occurrence [TO] = 832) and clinical study cluster (Cluster 3, TLS = 3496, TO = 1328). The timeline distribution indicated that radiomics and artificial intelligence (Cluster 4, Average Publication Year = 2019.39 ± 0.21) is a relatively new research cluster, and more endeavors deserve. Research signature burst and linear regression analysis further confirmed the findings above and revealed additional important results, such as tumor microenvironment (a = 0.6848, R² = 0.5194, p = 0.019) and immunotherapy (a = 1.036, R² = 0.6687, p = 0.004). More interestingly, by performing a “Walktrap” algorithm, the community map indicated that the “apoptosis, metabolism, chemotherapy” (Centrality = 12, Density = 6), “lymphoma, pet/ct, prognosis” (Centrality = 11, Density = 1), and “genotoxicity, mutagenicity” (Centrality = 9, Density = 4) are crucial but still under-explored, illustrating the potentiality of these research signatures in the field of the lymphoma metabolism.ConclusionThis study comprehensively mines valuable information and offers significant predictions about lymphoma metabolism for its clinical and experimental practice.
Collapse
|
32
|
Hu H, Huang Y, Sun H, Zhou K, Jiang L, Zhong J, Chen L, Wang L, Han Y, Wu H. A proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. EJNMMI Phys 2023; 10:51. [PMID: 37695324 PMCID: PMC10495295 DOI: 10.1186/s40658-023-00573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Conventional clinical PET scanners typically have an axial field of view (AFOV) of 15-30 cm, resulting in limited coverage and relatively low photon detection efficiency. Taking advantage of the development of long-axial PET/CT, the uEXPLORER PET/CT scanner with an axial coverage of 194 cm increases the effective count rate by approximately 40 times compared to that of conventional PET scanners. Ordered subset expectation maximization (OSEM) is the most widely used iterative algorithm in PET. The major drawback of OSEM is that the iteration process must be stopped before convergence to avoid image degradation due to excessive noise. A new Bayesian penalized-likelihood iterative PET reconstruction, named HYPER iterative, was developed and is now available on the uEXPLORER total-body PET/CT, which incorporates a noise control component by using a penalty function in each iteration and finds the maximum likelihood solution through repeated iterations. To date, its impact on lesion visibility in patients with a full injected dose or half injected dose is unclear. The goal of this study was to determine a proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. RESULTS The uEXPLORER total-body PET/CT images reconstructed using both OSEM and HYPER iterative algorithms of 20 tumour patients were retrospectively reviewed. The quality of the 5 min PET image was excellent (score 5) for all of the dose and reconstruction methods. Using the HYPER iterative method, the PET images reached excellent quality at 1 min with full-dose PET and at 2 min with half-dose PET. The PET image reached a similar excellent quality at 2 min with a full dose and at 3 min with a half dose using OSEM. The noise in the OSEM reconstruction was higher than that in the HYPER iterative. Compared to OSEM, the HYPER iterative had a slightly higher SUVmax and TBR of the lesions for large positive lesions (≥ 2 cm) (SUVmax: up to 9.03% higher in full dose and up to 12.52% higher in half dose; TBR: up to 8.69% higher in full dose and up to 23.39% higher in half dose). For small positive lesions (≤ 10 mm), the HYPER iterative had an obviously higher SUVmax and TBR of the lesions (SUVmax: up to 45.21% higher in full dose and up to 74.96% higher in half dose; TBR: up to 44.91% higher in full dose and up to 93.73% higher in half dose). CONCLUSIONS A 1 min scan with a full dose and a 2 min scan with a half dose are optimal for clinical diagnosis using the HYPER iterative and 2 min and 3 min for OSEM. For quantification of the small lesions, HYPER iterative reconstruction is preferred.
Collapse
Affiliation(s)
- Huiran Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanchao Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Hongyan Sun
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Kemin Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Jiang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinmei Zhong
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Chen
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Lijuan Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
33
|
Chen J, Xu D, Sun WJ, Wang WX, Xie NN, Ruan QR, Song JX. Differential diagnosis of lymphoma with 18F-FDG PET/CT in patients with fever of unknown origin accompanied by lymphadenopathy. J Cancer Res Clin Oncol 2023; 149:7187-7196. [PMID: 36884116 PMCID: PMC10374793 DOI: 10.1007/s00432-023-04665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE To investigate the value of 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in the differential diagnosis of lymphoma in patients with fever of unknown origin (FUO) accompanied by lymphadenopathy and to develop a simple scoring system to distinguish lymphoma from other etiologies. METHODS A prospective study was conducted on patients with classic FUO accompanied by lymphadenopathy. After standard diagnostic procedures, including PET/CT scan and lymph-node biopsy, 163 patients were enrolled and divided into lymphoma and benign groups according to the etiology. The diagnostic utility of PET/CT imaging was evaluated, and beneficial parameters that could improve diagnostic effectiveness were identified. RESULTS The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of PET/CT in diagnosing lymphoma in patients with FUO accompanied by lymphadenopathy were 81.0, 47.6, 59.3, and 72.7%, respectively. The lymphoma prediction model combining high SUVmax of the "hottest" lesion, high SUVmax of the retroperitoneal lymph nodes, old age, low platelet count, and low ESR had an area under the curve of 0.93 (0.89-0.97), a sensitivity of 84.8%, a specificity of 92.9%, a PPV of 91.8%, and an NPV of 86.7%. There was a lower probability of lymphoma for patients with a score < 4 points. CONCLUSIONS PET/CT scans show moderate sensitivity and low specificity in diagnosing lymphoma in patients with FUO accompanied by lymphadenopathy. The scoring system based on PET/CT and clinical parameters performs well in differentiating lymphoma and benign causes and can be used as a reliable noninvasive tool. REGISTRATION NUMBER This study on FUO was registered on http://www. CLINICALTRIALS gov on January 14, 2014, with registration number NCT02035670.
Collapse
Affiliation(s)
- Jia Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dong Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wen-Jin Sun
- Department of Infectious Diseases, Ezhou Central Hospital, Ezhou, 436099, China
| | - Wen-Xia Wang
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 528406, China
| | - Na-Na Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qiu-Rong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Jian-Xin Song
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
34
|
Rosen BS, Vaishampayan N, Cao Y, Mierzwa ML. The Utility of Interim Positron Emission Tomography Imaging to Inform Adaptive Radiotherapy for Head and Neck Squamous Cell Carcinoma. Cancer J 2023; 29:243-247. [PMID: 37471616 DOI: 10.1097/ppo.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABSTRACT In this article, as part of this special issue on biomarkers of early response, we review the current evidence to support the use of positron emission tomography (PET) imaging during chemoradiation therapy to inform biologically adaptive radiotherapy for head and neck squamous cell carcinoma. We review literature covering this topic spanning nearly 3 decades, including the use of various radiotracers and discoveries of novel predictive PET biomarkers. Through understanding how observational trials have informed current interventional clinical trials, we hope that this review will encourage researchers and clinicians to incorporate PET response criteria in new trial designs to advance biologically optimized radiotherapy.
Collapse
Affiliation(s)
- Benjamin S Rosen
- From the Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
35
|
Rosbach N, Fischer S, Koch V, Vogl TJ, Bochennek K, Lehrnbecher T, Mahmoudi S, Grünewald L, Grünwald F, Bernatz S. Correlation of mean apparent diffusion coefficient (ADC) and maximal standard uptake value (SUVmax) evaluated by diffusion-weighted MRI and 18F-FDG-PET/CT in children with Hodgkin lymphoma: a feasibility study. Radiol Oncol 2023; 57:150-157. [PMID: 37341195 PMCID: PMC10286888 DOI: 10.2478/raon-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The objective was to analyse if magnetic resonance imaging (MRI) can act as a non-radiation exposure surrogate for (18)F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in children with histologically confirmed Hodgkin lymphoma (HL) before treatment. This was done by analysing a potential correlation between apparent diffusion coefficient (ADC) in MRI and the maximum standardized uptake value (SUVmax) in FDG-PET/CT. PATIENTS AND METHODS Seventeen patients (six female, eleven male, median age: 16 years, range: 12-20 years) with histologically confirmed HL were retrospectively analysed. The patients underwent both MRI and (18)F-FDG PET/CT before the start of treatment. (18)F-FDG PET/CT data and correlating ADC maps in MRI were collected. For each HL-lesion two readers independently evaluated the SUVmax and correlating meanADC. RESULTS The seventeen patients had a total of 72 evaluable lesions of HL and there was no significant difference in the number of lesions between male and female patients (median male: 15, range: 12-19 years, median female: 17 range: 12-18 years, p = 0.021). The mean duration between MRI and PET/CT was 5.9 ± 5.3 days. The inter-reader agreement as assessed by the intraclass correlation coefficient (ICC) was excellent (ICC = 0.98, 95% CI: 0.97-0.99). The correlated SUVmax and meanADC of all 17 patients (ROIs n = 72) showed a strong negative correlation of -0.75 (95% CI: -0.84, - -0.63, p = 0.001). Analysis revealed a difference in the correlations of the examination fields. The correlated SUVmax and meanADC showed a strong correlation at neck and thoracal examinations (neck: -0.83, 95% CI: -0.93, - -0.63, p < 0.0001, thoracal: -0.82, 95% CI: -0.91, - -0.64, p < 0.0001) and a fair correlation at abdominal examinations of -0.62 (95% CI: -0.83, - -0.28, p = 0.001). CONCLUSIONS SUVmax and meanADC showed a strong negative correlation in paediatric HL lesions. The assessment seemed robust according to inter-reader agreements. Our results suggest that ADC maps and meanADC have the potential to replace PET/CT in the analysis of disease activity in paediatric Hodgkin lymphoma patients. This may help reduce the number of PET/CT examinations and decrease radiation exposure to children.
Collapse
Affiliation(s)
- Nicolas Rosbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Fischer
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Konrad Bochennek
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Leon Grünewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Grünwald
- Department of Nuclear Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Pant S, Kang SR, Lee M, Phuc PS, Yang HJ, Yang DH. Survival Prediction Using Transformer-Based Categorical Feature Representation in the Treatment of Diffuse Large B-Cell Lymphoma. Healthcare (Basel) 2023; 11:healthcare11081171. [PMID: 37108006 PMCID: PMC10137756 DOI: 10.3390/healthcare11081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of lymphoma, and accurate survival prediction is crucial for treatment decisions. This study aims to develop a robust survival prediction strategy to integrate various risk factors effectively, including clinical risk factors and Deauville scores in positron-emission tomography/computed tomography at different treatment stages using a deep-learning-based approach. We conduct a multi-institutional study on 604 DLBCL patients' clinical data and validate the model on 220 patients from an independent institution. We propose a survival prediction model using transformer architecture and a categorical-feature-embedding technique that can handle high-dimensional and categorical data. Comparison with deep-learning survival models such as DeepSurv, CoxTime, and CoxCC based on the concordance index (C-index) and the mean absolute error (MAE) demonstrates that the categorical features obtained using transformers improved the MAE and the C-index. The proposed model outperforms the best-performing existing method by approximately 185 days in terms of the MAE for survival time estimation on the testing set. Using the Deauville score obtained during treatment resulted in a 0.02 improvement in the C-index and a 53.71-day improvement in the MAE, highlighting its prognostic importance. Our deep-learning model could improve survival prediction accuracy and treatment personalization for DLBCL patients.
Collapse
Affiliation(s)
- Sudarshan Pant
- Department of Artificial Intelligence Convergence, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Minhee Lee
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Pham-Sy Phuc
- Department of Artificial Intelligence Convergence, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyung-Jeong Yang
- Department of Artificial Intelligence Convergence, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| |
Collapse
|
38
|
Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, Dragoni I, Heinzmann K, Potter S, Salisbury BM, Chenard-Poirier M, Greystoke A, Howell EC, Innes WA, Morris K, Plummer C, Rata M, Petrides G, Keun HC, Banerji U, Plummer R. A Phase I Dose-escalation Study of AZD3965, an Oral Monocarboxylate Transporter 1 Inhibitor, in Patients with Advanced Cancer. Clin Cancer Res 2023; 29:1429-1439. [PMID: 36652553 PMCID: PMC7614436 DOI: 10.1158/1078-0432.ccr-22-2263] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE Inhibition of monocarboxylate transporter (MCT) 1-mediated lactate transport may have cytostatic and/or cytotoxic effects on tumor cells. We report results from the dose-escalation part of a first-in-human trial of AZD3965, a first-in-class MCT1 inhibitor, in advanced cancer. PATIENTS AND METHODS This multicentre, phase I, dose-escalation and dose-expansion trial enrolled patients with advanced solid tumors or lymphoma and no standard therapy options. Exclusion criteria included history of retinal and/or cardiac disease, due to MCT1 expression in the eye and heart. Patients received daily oral AZD3965 according to a 3+3 then rolling six design. Primary objectives were to assess safety and determine the MTD and/or recommended phase II dose (RP2D). Secondary objectives for dose escalation included measurement of pharmacokinetic and pharmacodynamic activity. Exploratory biomarkers included tumor expression of MCT1 and MCT4, functional imaging of biological impact, and metabolomics. RESULTS During dose escalation, 40 patients received AZD3965 at 5-30 mg once daily or 10 or 15 mg twice daily. Treatment-emergent adverse events were primarily grade 1 and/or 2, most commonly electroretinogram changes (retinopathy), fatigue, anorexia, and constipation. Seven patients receiving ≥20 mg daily experienced dose-limiting toxicities (DLT): grade 3 cardiac troponin rise (n = 1), asymptomatic ocular DLTs (n = 5), and grade 3 acidosis (n = 1). Plasma pharmacokinetics demonstrated attainment of target concentrations; pharmacodynamic measurements indicated on-target activity. CONCLUSIONS AZD3965 is tolerated at doses that produce target engagement. DLTs were on-target and primarily dose-dependent, asymptomatic, reversible ocular changes. An RP2D of 10 mg twice daily was established for use in dose expansion in cancers that generally express high MCT1/low MCT4).
Collapse
Affiliation(s)
- Sarah Halford
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Stephen R Wedge
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey S Payne
- Cancer Research UK Imaging Centre, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Chris M Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Philip Sloan
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ilaria Dragoni
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Kathrin Heinzmann
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Sarah Potter
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Becky M Salisbury
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Maxime Chenard-Poirier
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Alastair Greystoke
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Elizabeth C Howell
- Newcastle University Centre for In Vivo Imaging, Newcastle, United Kingdom
| | - William A Innes
- Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Type, United Kingdom
| | - Karen Morris
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, United Kingdom
| | - Chris Plummer
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Mihaela Rata
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Udai Banerji
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ruth Plummer
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
39
|
Becker MMC, Arruda GFA, Berenguer DRF, Buril RO, Cardinale D, Brandão SCS. Anthracycline cardiotoxicity: current methods of diagnosis and possible role of 18F-FDG PET/CT as a new biomarker. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:17. [PMID: 36973762 PMCID: PMC10041777 DOI: 10.1186/s40959-023-00161-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023]
Abstract
Despite advances in chemotherapy, the drugs used in cancer treatment remain rather harmful to the cardiovascular system, causing structural and functional cardiotoxic changes. Positron-emission tomography associated with computed tomography (PET/CT) has emerged like a promising technique in the early diagnosis of these adverse drug effects as the myocardial tissue uptake of fluorodeoxyglucose labeled with fluorine-18 (18F-FDG), a glucose analog, is increased after their use. Among these drugs, anthracyclines are the most frequently associated with cardiotoxicity because they promote heart damage through DNA breaks, and induction of an oxidative, proinflammatory, and toxic environment. This review aimed to present the scientific evidence available so far regarding the use of 18F-FDG PET/CT as an early biomarker of anthracycline-related cardiotoxicity. Thus, it discusses the physiological basis for its uptake, hypotheses to justify its increase in the myocardium affected by anthracyclines, importance of 18F-FDG PET/CT findings for cardio-oncology, and primary challenges of incorporating this technique in standard clinical oncology practice.
Collapse
Affiliation(s)
- Mônica M C Becker
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Gustavo F A Arruda
- Recife Medical School, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Diego R F Berenguer
- Postgraduate Program in Translational Health, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Roberto O Buril
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Simone C S Brandão
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil.
- Recife Medical School, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil.
- Nuclear Medicine Department, Hospital das Clínicas, Federal University of Pernambuco, 1st floor, 1235 Avenida Professor Moraes Rego, Recife, State of Pernambuco, 50670-901, Brazil.
| |
Collapse
|
40
|
Feuerecker B, Heimer MM, Geyer T, Fabritius MP, Gu S, Schachtner B, Beyer L, Ricke J, Gatidis S, Ingrisch M, Cyran CC. Artificial Intelligence in Oncological Hybrid Imaging. ROFO-FORTSCHR RONTG 2023; 195:105-114. [PMID: 36170852 DOI: 10.1055/a-1909-7013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making.. CITATION FORMAT · Feuerecker B, Heimer M, Geyer T et al. Artificial Intelligence in Oncological Hybrid Imaging. Fortschr Röntgenstr 2023; 195: 105 - 114.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Partner site Munich, DKTK German Cancer Consortium, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sijing Gu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sergios Gatidis
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany.,MPI, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
41
|
Cui Y, Leng C. A glycolysis-related gene signatures in diffuse large B-Cell lymphoma predicts prognosis and tumor immune microenvironment. Front Cell Dev Biol 2023; 11:1070777. [PMID: 36755971 PMCID: PMC9899826 DOI: 10.3389/fcell.2023.1070777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma which that highly aggressive and heterogeneous. Glycolysis has been implicated in the regulation of tumor microenvironment (TME) and development. In this study, we aimed to establish a glycolysis-related prognostic model for the risk stratification, prognosis prediction, and immune landscape evaluation in patients with DLBCL. Methods: Three independent datasets GSE181063, GSE10846, and GSE53786 containing gene expression profiles and clinical data were downloaded from the Gene Expression Omnibus (GEO) database. The glycolysis-related prognostic model was developed with Cox and Least Absolute Shrinkage and Selector Operation (LASSO) regression and validated. A nomogram integrating clinical factors and glycolytic risk scores was constructed. The composition of the TME was analyzed with the ESTIMATE algorithm and single-sample gene set enrichment analysis (ssGSEA). Results: A glycolytic risk model containing eight genes was developed. The area under the receiver operating characteristic (ROC) curve (AUC) for the 1-, 3-, and 5-year was 0.718, 0.695, and 0.688, respectively. Patients in the high-risk group had significantly lower immune scores, elevated tumor purity, and poorer survival compared with those in the low-risk group. The nomogram constructed based on glycolytic risk score, age, Eastern Cooperative Oncology Group performance status (ECOG-PS), use of rituximab, and cell of origin (COO) displayed better prediction performance compared with the International Prognostic Index (IPI) in DLBCL. The glycolytic risk score was negatively correlated with the infiltration level of activated CD8 T cells, activated dendritic cells, natural killer cells, and macrophages and immune checkpoint molecules including PD-L2, CTLA4, TIM-3, TIGIT, and B7-H3. Conclusion: These results suggested that the glycolytic risk model could accurately and stably predict the prognosis of patients with DLBCL and might unearth the possible explanation for the glycolysis-related poor prognosis.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,*Correspondence: Changsen Leng, ; Yingying Cui,
| | - Changsen Leng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China,Guangdong Esophageal Cancer Institute, Guangzhou, China,*Correspondence: Changsen Leng, ; Yingying Cui,
| |
Collapse
|
42
|
Yang Z, Li Z, Fu C, Zhu Y, Lin Y, Deng Y, Li N, Peng F. Development and validation of a nomogram to predict overall survival and cancer-specific survival in patients with primary intracranial malignant lymphoma: A Retrospective study based on the SEER database. Front Oncol 2023; 12:1055046. [PMID: 36698406 PMCID: PMC9868835 DOI: 10.3389/fonc.2022.1055046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Primary intracranial malignant lymphoma (PIML) is a rare form of lymphoma that most often occurs in the brain and has an extremely low 5-year survival rate. Although chemotherapy and radiotherapy are widely used in the clinical management of PIML, the choice of treatment regimen and the actual circumstances of patients remain challenges when assessing survival rates in different patients. Methods Considering this, we obtained clinical treatment and survival information from the Surveillance, Epidemiology, and End Results database (SEER) on patients with lymphoma, the primary site of which was the brain, and performed statistical analyses of the demographic characteristics. Survival analyses were performed using the Kaplan-Meier method, and univariate and multivariate Cox proportional hazards regression analyses were performed to identify independent prognostic factors. Result We identified age, pathology, the Ann Arbor stage, and treatment as the risk factors affecting patient prognosis. The areas under the curve (AUCs) for overall survival at 1, 3, and 5 years were 0.8, 0.818, and 0.81, respectively. The AUCs for cancer-specific survival at 1, 3, and 5 years were 0.8, 0.79, and 0.79. The prediction ability in the development and verification cohorts was in good agreement with the actual values, while we plotted the clinical decision curves for the model, suggesting that the nomogram can provide benefits for clinical decision-making. Conclusion Our model provides a prognostic guide for patients with PIML and a reliable basis for clinicians.
Collapse
Affiliation(s)
- Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfen Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Lin
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Deng
- Department of Scientific Research Management, Ningxiang People’s Hospital, Hunan University Traditional Chinese Medicine, Ningxiang, Changsha, Hunan, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Lue KH, Chen YH, Wu YF, Liu SH. Influence of the methodological aspects of the dichotomization of total metabolic tumor volume measured through baseline fluorine-18 fluorodeoxyglucose PET on survival prediction in lymphoma. Nucl Med Commun 2023; 44:74-80. [PMID: 36514929 DOI: 10.1097/mnm.0000000000001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The total metabolic tumor volume (TMTV) measured from fluorine-18 fluorodeoxyglucose (18F-FDG) PET can be useful for determining the prognosis of patients with lymphoma. Stratifying patients into high- and low-TMTV risk groups requires a cutoff point, which is determined through the dichotomization method. This study investigated whether different TMTV dichotomization methods influenced survival prediction in patients with lymphoma. METHODS We retrospectively enrolled 129 patients with lymphoma who had undergone baseline 18F-FDG PET. TMTV was calculated using a fixed standardized uptake value threshold of 4.0. A total of six methods were employed to determine the optimal TMTV cutoff point using receiver-operating characteristic curve analyses, X-Tile bioinformatics software, and the Cutoff Finder web application. The prognostic performance of each method in survival prediction was examined. RESULTS The median (interquartile range) TMTV was 123 cm3 (21-335 cm3). The optimal TMTV cutoff values for predicting progression-free survival (PFS) and overall survival (OS) were in the range of 144-748 cm3. The cutoff points were used to dichotomize patients into two groups with distinct prognoses. All TMTV dichotomizations were significantly predictive of PFS and OS. The survival curves showed significant differences between the high- and low-TMTV groups. The C-indices of the survival models did not significantly differ in any of the dichotomizations. CONCLUSION The prognostic significance of TMTV was maintained regardless of the methodological aspects of dichotomization. However, the optimal TMTV cutoff point varied according to the chosen dichotomization method. Care should be taken when establishing an optimal TMTV cutoff point for clinical use.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology
| | - Yu-Hung Chen
- School of Medicine, College of Medicine, Tzu Chi University
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| | - Yi-Feng Wu
- School of Medicine, College of Medicine, Tzu Chi University
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| |
Collapse
|
44
|
Ali HY, Mohammad SA, Ali AH, Monib AM, Shalaby MH. Can positron emission tomography–computed tomography-based three target lesions' total lesion glycolysis predict therapeutic response in Hodgkin Lymphoma? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Universally maximum standardized uptake value (SUVmax) and lactate dehydrogenase (LDH) are used as tools for response assessment in Hodgkin Lymphoma (HL) patients. Our objectives are to evaluate the predictive potential and response assessment of total lesion glycolysis (TLG) and metabolic tumor volume (MTV)—maximum three target lesions—as another alternatives and to investigate the correlation between TLG and MTV with LDH.
Results
Both initial SUVmax and TLG were significantly associated with early patient response (p value 0.03, 0.047, respectively). An optimal threshold for SUVmax and TLG less than or equal 19.52, and 158.6, respectively, correlated with better therapeutic response. Initial LDH was moderately correlated with initial values of TLG (rs = 0.4, p value 0.01), MTV (rs = 0.44, p value 0.01) and SUVmax (rs = 0.42, p value 0.01).
Conclusion
TLG in correlation with LDH can be significant prognostic factors of therapeutic response in HL. They can be used for the identification of a subset of HL patients with a better outcome.
Collapse
|
45
|
Salem AE, Shah HR, Covington MF, Koppula BR, Fine GC, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: I. Hematologic Malignancies. Cancers (Basel) 2022; 14:cancers14235941. [PMID: 36497423 PMCID: PMC9738711 DOI: 10.3390/cancers14235941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
PET-CT is an advanced imaging modality with many oncologic applications, including staging, assessment of response to therapy, restaging and evaluation of suspected recurrence. The goal of this 6-part series of review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for the more common adult malignancies. In the first article of this series, hematologic malignancies are addressed. The classification of these malignancies will be outlined, with the disclaimer that the classification of lymphomas is constantly evolving. Critical applications, potential pitfalls, and nuances of PET-CT imaging in hematologic malignancies and imaging features of the major categories of these tumors are addressed. Issues of clinical importance that must be reported by the imaging professionals are outlined. The focus of this article is on [18F] fluorodeoxyglucose (FDG), rather that research tracers or those requiring a local cyclotron. This information will serve as a resource for the appropriate role and limitations of PET-CT in the clinical management of patients with hematological malignancy for health care professionals caring for adult patients with hematologic malignancies. It also serves as a practical guide for imaging providers, including radiologists, nuclear medicine physicians and their trainees.
Collapse
Affiliation(s)
- Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Harsh R. Shah
- Department of Medicine, Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Intermountain Healthcare Hospitals, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-1801-581-7553
| |
Collapse
|
46
|
Multimodality Imaging of Benign Primary Cardiac Tumor. Diagnostics (Basel) 2022; 12:diagnostics12102543. [PMID: 36292232 PMCID: PMC9601182 DOI: 10.3390/diagnostics12102543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Primary cardiac tumors (PCTs) are rare, with benign PCTs being relatively common in approximately 75% of all PCTs. Benign PCTs are usually asymptomatic, and they are found incidentally by imaging. Even if patients present with symptoms, they are usually nonspecific. Before the application of imaging modalities to the heart, our understanding of these tumors is limited to case reports and autopsy studies. The advent and improvement of various imaging technologies have enabled the non-invasive evaluation of benign PCTs. Although echocardiography is the most commonly used imaging examination, it is not the best method to describe the histological characteristics of tumors. At present, cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT) are often used to assess benign PCTs providing detailed information on anatomical and tissue features. In fact, each imaging modality has its own advantages and disadvantages, multimodality imaging uses two or more imaging types to provide valuable complementary information. With the widespread use of multimodality imaging, these techniques play an indispensable role in the management of patients with benign PCTs by providing useful diagnostic and prognostic information to guide treatment. This article reviews the multimodality imaging characterizations of common benign PCTs.
Collapse
|
47
|
Eisazadeh R, Mirshahvalad SA. 18F-FDG PET/CT prognostic role in predicting response to salvage therapy in relapsed/refractory Hodgkin's lymphoma. Clin Imaging 2022; 92:25-31. [PMID: 36179394 DOI: 10.1016/j.clinimag.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the response predictors, both clinical and 18F-FDG PET/CT parameters, in Hodgkin's lymphoma (HL) patients diagnosed with refractory/relapsed disease who were planned to receive salvage therapy. METHODS In this retrospective study, all HL patients referred to our center between March 2015 and July 2021 were reviewed. Patients with refractory/relapsed disease who were candidates for salvage therapy were included. 18F-FDG PET/CT measurements at the time of diagnosis were extracted as the predictors, and the lesions' response at the end of the salvage therapy was considered the outcomes. The Kaplan-Meier method and multiple Cox regression were utilized to find the significant parameters to predict the time to reach the complete response. The statistical significance level was set at a two-sided p-value <0.05. RESULTS A total of 303 tumoral lesions from 64 patients were included. Regarding the factors associated with the response, B symptoms (p-value < 0.01), pathologic subtype (p-value < 0.001), and patient stage (p-value < 0.01) were the significant clinical parameters. In addition, SUVmax (p-value = 0.03), SUVmax/hepatic background SUVmax (p-value = 0.04), SUVmean (in all thresholds; 41% p-value = 0.02, 51% p-value = 0.04, 61% p-value = 0.01), and MTV (in all thresholds; 41% p-value = 0.04, 51% p-value = 0.04, 61% p-value = 0.05) were the significant parameters in the 18F-FDG PET/CT scans. At the median follow-up of 9 months, we found that pathologic subtype (p-value < 0.01), patient stage (p-value = 0.03), SUVmax (p-value = 0.02), SUVmax/hepatic background SUVmax (p-value = 0.03), SUVmean (in all thresholds; 41% p-value = 0.01, 51% p-value = 0.02, 61% p-value = 0.02), and MTV ≥ 41% (p-value = 0.02) were significant predictive factors. Multiple Cox regression showed the pathologic subtype (p-value = 0.02), SUVmax (p-value = 0.02), and MTV ≥ 41% (p-value = 0.04) were the most significant predictors. CONCLUSION Our study demonstrated that by knowing the histopathology of the lesions, the pre-treatment 18F-FDG PET/CT might be able to predict response after salvage therapy in the relapsed/refractory HL.
Collapse
Affiliation(s)
- Roya Eisazadeh
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran; Joint Department of Medical Imaging, University Health Network, University of Toronto, Canada.
| |
Collapse
|
48
|
Lehloenya RJ. Disease severity and status in Stevens–Johnson syndrome and toxic epidermal necrolysis: Key knowledge gaps and research needs. Front Med (Lausanne) 2022; 9:901401. [PMID: 36172538 PMCID: PMC9510751 DOI: 10.3389/fmed.2022.901401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are on a spectrum of cutaneous drug reactions characterized by pan-epidermal necrosis with SJS affecting < 10% of body surface area (BSA), TEN > 30%, and SJS/TEN overlap between 10 and 30%. Severity-of-illness score for toxic epidermal necrolysis (SCORTEN) is a validated tool to predict mortality rates based on age, heart rate, BSA, malignancy and serum urea, bicarbonate, and glucose. Despite improved understanding, SJS/TEN mortality remains constant and therapeutic interventions are not universally accepted for a number of reasons, including rarity of SJS/TEN; inconsistent definition of cases, disease severity, and endpoints in studies; low efficacy of interventions; and variations in treatment protocols. Apart from mortality, none of the other endpoints used to evaluate interventions, including duration of hospitalization, is sufficiently standardized to be reproducible across cases and treatment centers. Some of the gaps in SJS/TEN research can be narrowed through international collaboration to harmonize research endpoints. A case is made for an urgent international collaborative effort to develop consensus on definitions of endpoints such as disease status, progression, cessation, and complete re-epithelialization in interventional studies. The deficiencies of using BSA as the sole determinant of SJS/TEN severity, excluding internal organ involvement and extension of skin necrosis beyond the epidermis, are discussed and the role these factors play on time to healing and mortality beyond the acute stage is highlighted. The potential role of artificial intelligence, biomarkers, and PET/CT scan with radiolabeled glucose as markers of disease status, activity, and therapeutic response is also discussed.
Collapse
Affiliation(s)
- Rannakoe J. Lehloenya
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
- *Correspondence: Rannakoe J. Lehloenya, ; orcid.org/0000-0002-1281-1789
| |
Collapse
|
49
|
Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Gleeson F, Patel C, Scarsbrook A. Utility of pre-treatment FDG PET/CT-derived machine learning models for outcome prediction in classical Hodgkin lymphoma. Eur Radiol 2022; 32:7237-7247. [PMID: 36006428 PMCID: PMC9403224 DOI: 10.1007/s00330-022-09039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 12/22/2022]
Abstract
Objectives Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT–derived machine learning (ML) models for predicting outcome in patients with cHL. Methods All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator characteristic analysis was used to assess performance. Results A total of 289 patients (153 males), median age 36 (range 16–88 years), were included. There was no significant difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01 and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume and clinical features or the highest performing radiomic model. Conclusions Outcome prediction using pre-treatment FDG PET/CT–derived ML models is feasible in cHL patients. Further work is needed to determine optimum predictive thresholds for clinical use. Key points • A fixed threshold segmentation method led to more robust radiomic features. • A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible. • A predictive model based on ridge regression was the best performing model on our dataset. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-09039-0.
Collapse
Affiliation(s)
- Russell Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Leeds Institute of Health Research, University of Leeds, Leeds, UK.
| | - Matt Clark
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Cathy Burton
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Alejandro F Frangi
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.,Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, UK.,Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Fergus Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chirag Patel
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew Scarsbrook
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Health Research, University of Leeds, Leeds, UK
| |
Collapse
|
50
|
Zhang G, Li J, Hui X. Use of 18F-FDG-PET/CT in differential diagnosis of primary central nervous system lymphoma and high-grade gliomas: A meta-analysis. Front Neurol 2022; 13:935459. [PMID: 36061992 PMCID: PMC9428250 DOI: 10.3389/fneur.2022.935459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) and high-grade glioma (HGG) appear similar under imaging. However, since the two tumors vary in their treatment methods, their differential diagnosis is crucial. The use of 18F-fluorodeoxyglucose positron emission tomography computed tomography (18F-FDG-PET/CT) imaging to effectively distinguish between the two tumors is not clear; therefore, a meta-analysis was carried out to determine its effectiveness. Materials and methods The databases PubMed, EMBASE, Cochrane, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang, China Science, and Technology Journal Database (CQVIP) were exhaustively searched using stringent inclusion and exclusion criteria to select high-quality literature. The Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2) was used for the qualitative assessment of the included literature. The bivariate effect model was used to combine statistics such as sensitivity (SEN) and specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) [95% confidence intervals (CI)], plot summary receiver operating characteristic (SROC) curve, and calculate the area under the curve (AUC) value. Sensitivity analysis was used to evaluate the stability of the results, and Deek's test was used to assess publication bias. Meta-regression and subgroup analysis was used to determine the sources of heterogeneity. Results A total of nine studies were included in this study. For differential diagnosis of PCNSL and HGG, the combined SEN was 0.91 (95% CI: 0.80–0.96; I2 = 46.73%), combined SPE was 0.88 (95% CI: 0.82–0.93; I2 = 56.30%), the combined PLR was 7.83 (95% CI: 4.96–12.37; I2 = 15.57%), combined NLR was 0.10 (95% CI: 0.05–0.23; I2 = 31.99%), combined DOR was 77.36 (95% CI: 32.74–182.77; I2 = 70.70%). The AUC of SROC was 0.95 (95% CI: 0.93–0.97). No publication bias was found and the sample size and different parameters were the primary reason for heterogeneity. Conclusion The 18F-FDG-PET/CT imaging technique has a high diagnostic accuracy in the differential diagnosis of PNCSL and HGG. Patients suspected to have the above two tumors are suggested to be examined by 18F-FDG-PET / CT to help in the clinical distinction and further treatment modalities.
Collapse
Affiliation(s)
- Guisheng Zhang
- Department of Neurosurgery of West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jiuhong Li
- Department of Neurosurgery of West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuhui Hui
- Department of Neurosurgery of West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xuhui Hui
| |
Collapse
|