1
|
Jiang H, Zhou Y, Zhang W, Li H, Ma W, Ji X, Zhou C. Molecular mechanisms of endothelial-mesenchymal transition and its pathophysiological feature in cerebrovascular disease. Cell Biosci 2025; 15:49. [PMID: 40253404 PMCID: PMC12008988 DOI: 10.1186/s13578-025-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
The phenomenon of endothelial-mesenchymal transition (EndMT), a distinct subtype of epithelial-mesenchymal transition (EMT), has garnered significant attention from scholars. EndMT refers to the process whereby endothelial cells (ECs) transform into mesenchymal cells in response to various stimuli, resulting in the loss of their original characteristics. This process has diverse implications in both physiological and pathological states. Under physiological conditions, EndMT plays a crucial role in the development of the cardiovascular system. Conversely, under pathological conditions, EndMT has been identified as a pivotal factor in the development of cardiovascular diseases. Nonetheless, a comprehensive overview of EndMT in cerebrovascular disease is currently lacking. Here, we discuss the heterogeneity of EndMT occurrence and the regulatory factors involved in its development and analyze the feasibility of EndMT as a therapeutic target, aiming to provide a solid theoretical foundation and evidence to address diseases caused by pathological EndMT.
Collapse
Affiliation(s)
- Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Lu Z, Li Y, Lu C, Meng Z, Bai L, Huang F, Zeng Z. Inhibition of Endothelial-Mesenchymal Transition Mediated by Activin Receptor Type IIA Attenuates Valvular Injury Induced by Group A Streptococcus in Lewis Rats. FRONT BIOSCI-LANDMRK 2025; 30:26370. [PMID: 39862082 DOI: 10.31083/fbl26370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear. METHODS Our study was divided into two parts: in vivo and in vitro. We constructed a small interfering RNA (ACVR2A-siRNA) by silencing activin receptor type IIA (ACVR2A) and an adeno-associated virus (AAV-ACVR2A) containing a sequence that silenced ACVR2A. The EndMT cell model was established via human umbilical vein endothelial cells (HUVECs), and the RHD animal model was established via female Lewis rats. ACVR2A-siRNA and AAV-ACVR2A were used in the above experiments. RESULTS EndMT occurred in the valvular tissues of RHD rats, and activin and its associated intranuclear transcription factors were also activated during this process, with inflammatory infiltration and fibrotic damage also occurring in the valvular tissues. After inhibition of ACVR2A, EndMT in valvular tissues was also inhibited, and inflammatory infiltration and fibrosis were reduced. Endothelial cell experiments suggested that mesenchymal transition could be stimulated by activin and that inhibition of ACVR2A attenuated mesenchymal transition. CONCLUSIONS Activin plays an important role in signal transduction during EndMT after activation, and inhibition of ACVR2A may attenuate RHD valvular damage by mediating EndMT. Targeting ACVR2A may be a therapeutic strategy to alleviate RHD valvular injury.
Collapse
Affiliation(s)
- Zirong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Yuan Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Zhongyuan Meng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Ling Bai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| |
Collapse
|
3
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
4
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
5
|
Terriaca S, Monastero R, Orlandi A, Balistreri CR. The key role of miRNA in syndromic and sporadic forms of ascending aortic aneurysms as biomarkers and targets of novel therapeutic strategies. Front Genet 2024; 15:1365711. [PMID: 38450200 PMCID: PMC10915088 DOI: 10.3389/fgene.2024.1365711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence shows that epigenetics also plays a key role in regulating the pathogenetic mechanism of all types of aortic aneurysms. It is well-known that epigenetic factors modulate gene expression. This mechanism appears to be of interest especially knowing the relevance of genetic susceptibility and genetic factors in the complex pathophysiology of aortic aneurysms, and of sporadic forms; in fact, the latter are the result of a close interaction between genetic and modifiable lifestyle factors (i.e., nutrition, smoking, infections, use of drugs, alcohol, sedentary lifestyle, etc.). Epigenetic factors include DNA methylation, post-translational histone modifications, and non-coding RNA. Here, our attention is focused on the role of miRNA in syndromic and sporadic forms of thoracic aortic aneurysms. They could be both biomarkers and targets of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Terriaca
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Augusto Orlandi
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Carmela Rita Balistreri
- Cellular, Molecular, and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi N D), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Freiholtz D, Bergman O, Lång K, Poujade FA, Paloschi V, Granath C, Lindeman JHN, Olsson C, Franco-Cereceda A, Eriksson P, Björck HM. Bicuspid aortic valve aortopathy is characterized by embryonic epithelial to mesenchymal transition and endothelial instability. J Mol Med (Berl) 2023; 101:801-811. [PMID: 37162557 PMCID: PMC10299957 DOI: 10.1007/s00109-023-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart malformation frequently associated with ascending aortic aneurysm (AscAA). Epithelial to mesenchymal transition (EMT) may play a role in BAV-associated AscAA. The aim of the study was to investigate the type of EMT associated with BAV aortopathy using patients with a tricuspid aortic valve (TAV) as a reference. The state of the endothelium was further evaluated. Aortic biopsies were taken from patients undergoing open-heart surgery. Aortic intima/media miRNA and gene expression was analyzed using Affymetrix human transcriptomic array. Histological staining assessed structure, localization, and protein expression. Migration/proliferation was assessed using ORIS migration assay. We show different EMT types associated with BAV and TAV AscAA. Specifically, in BAV-associated aortopathy, EMT genes related to endocardial cushion formation were enriched. Further, BAV vascular smooth muscle cells were less proliferative and migratory. In contrast, TAV aneurysmal aortas displayed a fibrotic EMT phenotype with medial degenerative insults. Further, non-dilated BAV aortas showed a lower miRNA-200c-associated endothelial basement membrane LAMC1 expression and lower CD31 expression, accompanied by increased endothelial permeability indicated by increased albumin infiltration. Embryonic EMT is a characteristic of BAV aortopathy, associated with endothelial instability and vascular permeability of the non-dilated aortic wall. KEY MESSAGES: Embryonic EMT is a feature of BAV-associated aortopathy. Endothelial integrity is compromised in BAV aortas prior to dilatation. Non-dilated BAV ascending aortas are more permeable than aortas of tricuspid aortic valve patients.
Collapse
Affiliation(s)
- David Freiholtz
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Otto Bergman
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Karin Lång
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Flore-Anne Poujade
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Valentina Paloschi
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Carl Granath
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan H N Lindeman
- Department of Vascular Surgery, Department of Surgery, Medical Center Leiden, Leiden University, Leiden, the Netherlands
| | - Christian Olsson
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Hanna M Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden.
| |
Collapse
|
7
|
Podyacheva E, Danilchuk M, Toropova Y. Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomed Pharmacother 2023; 162:114576. [PMID: 36989721 DOI: 10.1016/j.biopha.2023.114576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Doxorubicin (DOX) is an effective antineoplastic agent used to treat various types of cancers. However, its use is limited by the development of cardiotoxicity, which may result in heart failure. The exact mechanisms underlying DOX-induced cardiotoxicity are not fully understood, but recent studies have shown that endothelial-mesenchymal transition (EndMT) and endothelial damage play a crucial role in this process. EndMT is a biological process in which endothelial cells lose their characteristics and transform into mesenchymal cells, which have a fibroblast-like phenotype. This process has been shown to contribute to tissue fibrosis and remodeling in various diseases, including cancer and cardiovascular diseases. DOX-induced cardiotoxicity has been demonstrated to increase the expression of EndMT markers, suggesting that EndMT may play a critical role in the development of this condition. Furthermore, DOX-induced cardiotoxicity has been shown to cause endothelial damage, leading to the disruption of the endothelial barrier function and increased vascular permeability. This can result in the leakage of plasma proteins, leading to tissue edema and inflammation. Moreover, DOX can impair the production of nitric oxide, endothelin-1, neuregulin, thrombomodulin, thromboxane B2 etc. by endothelial cells, leading to vasoconstriction, thrombosis and further impairing cardiac function. In this regard, this review is devoted to the generalization and structuring of information about the known molecular mechanisms of endothelial remodeling under the action of DOX.
Collapse
|
8
|
Nappi F, Giacinto O, Lusini M, Garo M, Caponio C, Nenna A, Nappi P, Rousseau J, Spadaccio C, Chello M. Patients with Bicuspid Aortopathy and Aortic Dilatation. J Clin Med 2022; 11:jcm11206002. [PMID: 36294323 PMCID: PMC9605389 DOI: 10.3390/jcm11206002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Bicuspid aortic valve (BAV) is the most frequent congenital cardiac disease. Alteration of ascending aorta diameter is a consequence of shear stress alterations due to haemodynamic abnormalities developed from inadequate valve cusp coaptation. (2) Objective: This narrative review aims to discuss anatomical, pathophysiological, genetical, ultrasound, and radiological aspects of BAV disease, focusing on BAV classification related to imaging patterns and flux models involved in the onset and developing vessel dilatation. (3) Methods: A comprehensive search strategy was implemented in PubMed from January to May 2022. English language articles were selected independently by two authors and screened according to the following criteria. (4) Key Contents and Findings: Ultrasound scan is the primary step in the diagnostic flowchart identifying structural and doppler patterns of the valve. Computed tomography determines aortic vessel dimensions according to the anatomo-pathology of the valve. Magnetic resonance identifies hemodynamic alterations. New classifications and surgical indications derive from these diagnostic features. Currently, indications correlate morphological results, dissection risk factors, and genetic alterations. Surgical options vary from aortic valve and aortic vessel substitution to aortic valve repair according to the morphology of the valve. In selected patients, transcatheter aortic valve replacement has an even more impact on the treatment choice. (5) Conclusions: Different imaging approaches are an essential part of BAV diagnosis. Morphological classifications influence the surgical outcome.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-1-4933-4104; Fax: +33-1-4933-4119
| | - Omar Giacinto
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marialuisa Garo
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Claudio Caponio
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Juliette Rousseau
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Cristiano Spadaccio
- Department of Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
9
|
Du M, Espinosa-Diez C, Liu M, Ahmed IA, Mahan S, Wei J, Handen AL, Chan SY, Gomez D. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. iScience 2022; 25:104169. [PMID: 35465051 PMCID: PMC9018390 DOI: 10.1016/j.isci.2022.104169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
miRNAs are versatile regulators of smooth muscle cell (SMC) fate and behavior in vascular development and disease. Targeted loss-of-function studies have established the relevance of specific miRNAs in controlling SMC differentiation or mediating phenotypic modulation. Our goal was to characterize SMC miRNAome and its contribution to transcriptome changes during phenotypic modulation. Small RNA sequencing revealed that dedifferentiation led to the differential expression of over 50 miRNAs in cultured SMC. miRNA/mRNA comparison predicted that over a third of SMC transcript expression was regulated by differentially expressed miRNAs. Our screen identified the miR-200 cluster as highly downregulated during dedifferentiation. miR-200 maintains SMC quiescence and represses proliferation, migration, and neointima formation, in part by targeting Quaking, a central SMC phenotypic switching mediator. Our study unraveled the substantial contribution of miRNAs in regulating the SMC transcriptome and identified the miR-200 cluster as a pro-quiescence mechanism and a potential inhibitor of vascular restenosis.
Collapse
Affiliation(s)
- Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ibrahim Adeola Ahmed
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianxin Wei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam L Handen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Nikolajevic J, Ariaee N, Liew A, Abbasnia S, Fazeli B, Sabovic M. The Role of MicroRNAs in Endothelial Cell Senescence. Cells 2022; 11:cells11071185. [PMID: 35406749 PMCID: PMC8997793 DOI: 10.3390/cells11071185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Cellular senescence is a complex, dynamic process consisting of the irreversible arrest of growth and gradual deterioration of cellular function. Endothelial senescence affects the cell’s ability to repair itself, which is essential for maintaining vascular integrity and leads to the development of endothelial dysfunction, which has an important role in the pathogenesis of cardiovascular diseases. Senescent endothelial cells develop a particular, senescence-associated secretory phenotype (SASP) that detrimentally affects both surrounding and distant endothelial cells, thereby facilitating the ageing process and development of age-related disorders. Recent studies highlight the role of endothelial senescence and its dysfunction in the pathophysiology of several age-related diseases. MicroRNAs are small noncoding RNAs that have an important role in the regulation of gene expression at the posttranscriptional level. Recently, it has been discovered that miRNAs could importantly contribute to endothelial cell senescence. Overall, the research focus has been shifting to new potential mechanisms and targets to understand and prevent the structural and functional changes in ageing senescent endothelial cells in order to prevent the development and limit the progression of the wide spectrum of age-related diseases. The aim of this review is to provide some insight into the most important pathways involved in the modulation of endothelial senescence and to reveal the specific roles of several miRNAs involved in this complex process. Better understanding of miRNA’s role in endothelial senescence could lead to new approaches for prevention and possibly also for the treatment of endothelial cells ageing and associated age-related diseases.
Collapse
Affiliation(s)
- Jovana Nikolajevic
- Department of Vascular Diseases, University Medical Center, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Nazila Ariaee
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Aaron Liew
- Department of Medicine, National University of Galway, H91 CF50 Galway, Ireland;
| | - Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Bahare Fazeli
- Vascular Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Miso Sabovic
- Department of Vascular Diseases, University Medical Center, 1000 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Yu C, Liu Q, Wang J. A physical mechanism of heterogeneity and micro-metastasis in stem cell, cancer and cancer stem cell. J Chem Phys 2022; 156:075103. [DOI: 10.1063/5.0078196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chong Yu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, China
| | - Qiong Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
| | - Jin Wang
- Chemistry, Physics and Astronomy, Stony Brook University, United States of America
| |
Collapse
|
12
|
Zhang H, Liu D, Zhu S, Wang F, Sun X, Yang S, Wang C. Plasma Exosomal Mir-423-5p Is Involved in the Occurrence and Development of Bicuspid Aortopathy via TGF-β/SMAD2 Pathway. Front Physiol 2021; 12:759035. [PMID: 34955881 PMCID: PMC8702998 DOI: 10.3389/fphys.2021.759035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Patients with bicuspid aortic valve (BAV) are at increased risk for ascending aortic dilation (AAD). Our study was aimed at systemically analyzing the expression profile and mechanism of circulating plasma exosomal microRNAs (miRNAs) related to BAV and AAD. METHODS We isolated plasma exosomes from BAV patients (n=19), BAV patients with AAD (BAVAD, n=26), and healthy tricuspid aortic valve individuals with low cardiovascular risk (TAVnon, n=16). We applied a small RNA sequencing approach to identify the specific plasma exosomal miRNAs associated with BAV (n=8) and BAVAD (n=10) patients compared with healthy TAVnon (n=6) individuals. The candidate differentially expressed (DE) miRNAs were selected and validated by RT-qPCR in the remaining samples. GO and KEGG pathway enrichment analyses were performed to illustrate the functions of target genes. Western blot analysis and luciferase reporter assay were conducted in human aortic vascular smooth muscle cells (VSMCs) to verify the results of target gene prediction in vitro. Results: The expression levels of three up-regulated (miR-151a-3p, miR-423-5p, and miR-361-3p) and two down-regulated (miR-16-5p and miR-15a-5p) exosomal miRNAs were significantly altered in BAV disease. Additionally, miR-423-5p could be functionally involved in the occurrence and development of BAV and its complication BAVAD by regulating TGF-β signaling. miR-423-5p could target to SMAD2 and decreased the protein levels of SMAD2 and P-SMAD2. CONCLUSION Plasma exosomal miR-423-5p regulated TGF-β signaling by targeting SMAD2, thus exerting functions in the occurrence and development of BAV disease and its complication bicuspid aortopathy.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Mao Y, Jiang L. MiR-200c-3p promotes ox-LDL-induced endothelial to mesenchymal transition in human umbilical vein endothelial cells through SMAD7/YAP pathway. J Physiol Sci 2021; 71:30. [PMID: 34525946 PMCID: PMC10717414 DOI: 10.1186/s12576-021-00815-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Endothelial to mesenchymal transition (EndMT) participates in the progression of atherosclerosis (AS). MiR-200c-3p has been implicated in EndMT. However, the functional role of miR-200c-3p in AS remains largely unknown. Here, we demonstrated the critical role of miR-200c-3p in regulating EndMT in AS. METHODS ApoE-/- mice were fed with high-fat diet to establish AS mouse model, and human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to mimic AS cell model. The expression of miR-200c-3p, SMAD7 and YAP in ApoE-/- mice and HUVECs was detected by quantitative real-time PCR. Rhodamine phalloidin staining and Western blot were performed to observe cell morphology and EndMT marker expression of HUVECs. Luciferase reporter assay and Co-Immunoprecipitation were performed to verify the relationship among miR-200c-3p, SMAD7, and YAP. RESULTS MiR-200c-3p was highly expressed, and SMAD7 and YAP were down-regulated in the aortic tissues of ApoE-/- mice and ox-LDL-treated HUVECs. MiR-200c-3p overexpression promoted the transformation of ox-LDL-treated HUVECs from cobblestone-like epithelial phenotype to a spindle-like mesenchymal phenotype. Meanwhile, miR-200c-3p up-regulation repressed the expression of endothelial markers CD31 and vWF and promoted the expression of mesenchymal markers α-SMA and vimentin in the ox-LDL-treated HUVECs. MiR-200c-3p inhibited SMAD7 and YAP expression by interacting with 3' untranslated region of SMAD7. Moreover, miR-200c-3p promoted EndMT in ox-LDL-treated HUVECs by inhibiting SMAD7/YAP pathway. CONCLUSION This work demonstrated that MiR-200c-3p promoted ox-LDL-induced EndMT in HUVECs through SMAD7/YAP pathway, which may be important for the onset of atherosclerosis.
Collapse
Affiliation(s)
- Yongzhong Mao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ling Jiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
14
|
Jia H, Kang L, Ma Z, Lu S, Huang B, Wang C, Zou Y, Sun Y. MicroRNAs involve in bicuspid aortic aneurysm: pathogenesis and biomarkers. J Cardiothorac Surg 2021; 16:230. [PMID: 34384454 PMCID: PMC8359579 DOI: 10.1186/s13019-021-01613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
The incidence of bicuspid aortic valves (BAV) is high in the whole population, BAV-related thoracic aortic aneurysm (TAA) is accompanied by many adverse vascular events. So far, there are two key points in dealing with BAV-related TAA. First is fully understanding on its pathogenesis. Second is optimizing surgical intervention time. This review aims to illustrate the potential role of miRNAs in both aspects, that is, how miRNAs are involved in the occurrence and progression of BAV-related TAA, and the feasibilities of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Hao Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Zhen Ma
- Central Laboratory of Cardiovascular Institute, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Shuyang Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China.
| | - Yunzeng Zou
- Central Laboratory of Cardiovascular Institute, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China.
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Long non-coding RNA MIR200CHG promotes breast cancer proliferation, invasion, and drug resistance by interacting with and stabilizing YB-1. NPJ Breast Cancer 2021; 7:94. [PMID: 34272387 PMCID: PMC8285504 DOI: 10.1038/s41523-021-00293-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have been identified as key regulators of tumorigenesis and development. We aim to explore the biological functions and molecular mechanisms of lncRNA MIR200CHG in breast cancer. We found that MIR200CHG is highly expressed in breast cancer tissues and is related to the tumor size and histopathological grade. In vitro and in vivo experiments confirmed that MIR200CHG can promote breast cancer proliferation, invasion, and drug resistance. MIR200CHG directly binds to the transcription factor Y-box binding protein-1 (YB-1), and inhibits its ubiquitination and degradation. MIR200CHG regulates YB-1 phosphorylation at serine 102, thereby affecting the expression of genes related to tumor cell proliferation, apoptosis, invasion, and drug resistance. Additionally, MIR200CHG partially affects the expression of miR-200c/141-3p encoded by its intron region. Therefore, MIR200CHG can promote the proliferation, invasion, and drug resistance of breast cancer by interacting with and stabilizing YB-1, and has the potential to become a target for breast cancer treatment.
Collapse
|
16
|
Wang J, Deng W, Lv Q, Li Y, Liu T, Xie M. Aortic Dilatation in Patients With Bicuspid Aortic Valve. Front Physiol 2021; 12:615175. [PMID: 34295254 PMCID: PMC8290129 DOI: 10.3389/fphys.2021.615175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac abnormality. BAV aortic dilatation is associated with an increased risk of adverse aortic events and represents a potentially lethal disease and hence a considerable medical burden. BAV with aortic dilatation warrants frequent monitoring, and elective surgical intervention is the only effective method to prevent dissection or rupture. The predictive value of the aortic diameter is known to be limited. The aortic diameter is presently still the main reference standard for surgical intervention owing to the lack of a comprehensive understanding of BAV aortopathy progression. This article provides a brief comprehensive review of the current knowledge on BAV aortopathy regarding clinical definitions, epidemiology, natural course, and pathophysiology, as well as hemodynamic and clinically significant aspects on the basis of the limited data available.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
17
|
Stempor PA, Avni D, Leibowitz R, Sidi Y, Stępień M, Dzieciątkowski T, Dobosz P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells. Int J Mol Sci 2021; 22:2553. [PMID: 33806327 PMCID: PMC7961343 DOI: 10.3390/ijms22052553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.
Collapse
Affiliation(s)
- Przemysław A. Stempor
- SmartImmune Ltd, Accelerate Cambridge, University of Cambridge Judge Business School, Cambridge CB4 1EE, UK;
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashome 52621, Israel;
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be’er Yaakov, Tel Hashome 52621, Israel;
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Yechezkel Sidi
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Maria Stępień
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Paula Dobosz
- Department of Hematology, Transplantationand Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
18
|
Xian S, Chen A, Wu X, Lu C, Wu Y, Huang F, Zeng Z. Activation of activin/Smad2 and 3 signaling pathway and the potential involvement of endothelial‑mesenchymal transition in the valvular damage due to rheumatic heart disease. Mol Med Rep 2020; 23:10. [PMID: 33179113 PMCID: PMC7673319 DOI: 10.3892/mmr.2020.11648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatic heart disease (RHD) is an autoimmune disease caused by rheumatic fever following group A hemolytic streptococcal infection and primarily affects the mitral valve. RHD is currently a major global health problem. However, the exact pathological mechanisms associated with RHD-induced cardiac valve damage remain to be elucidated. The endothelial-mesenchymal transition (EndMT) serves a key role in a number of diseases with an important role in cardiac fibrosis and the activin/Smad2 and 3 signaling pathway is involved in regulating the EndMT. Nevertheless, there are no studies to date, to the best of the authors' knowledge, investigating the association between RHD and EndMT. Thus, the aim of the current study was to investigate the potential role of EndMT in cardiac valve damage and assess whether activin/Smad2 and 3 signaling was activated during RHD-induced valvular injury in a rat model of RHD induced by inactivated Group A streptococci and complete Freund's adjuvant. Inflammation and fibrosis were assessed by hematoxylin and eosin and Sirius red staining. Serum cytokine and rheumatoid factor levels were measured using ELISA kits. Expression levels of activin/Smad2 and 3 signaling pathway-related factors [activin A, Smad2, Smad3, phosphorylated (p-)Smad2 and p-Smad3], EndMT-related factors [lymphoid enhancer factor-1 (LEF-1), Snail1, TWIST, zinc finger E-box-binding homeobox (ZEB)1, ZEB2, α smooth muscle actin (α-SMA) and type I collagen α 1 (COL1A1)], apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation markers (NF-κB and p-NF-κB) were detected using reverse transcription-quantitative PCR and western blot analyses. Compared with the control group, the degree of valvular inflammation and fibrosis, serum levels of IL-6, IL-17, TNF-α and expression of apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation marker (p-NF-κB), activin/Smad2 and 3 signaling pathway-related factors (activin A, p-Smad2 and p-Smad3), EndMT-related factors (LEF-1, Snail1, TWIST, ZEB 1, ZEB2, α-SMA and COL1A1) were significantly increased in the RHD group. These results suggested that the activin/Smad2 and 3 signaling pathway was activated during the development of valvular damage caused by RHD and that the EndMT is involved in RHD-induced cardiac valve damage.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ang Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaodan Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunjiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
19
|
Naito S, Petersen J, Sequeira-Gross T, Zeller T, Reichenspurner H, Girdauskas E. Circulating microRNAs vs. aortic diameter in bicuspid aortic valve aortopathy. Asian Cardiovasc Thorac Ann 2020; 30:947-953. [PMID: 32498553 DOI: 10.1177/0218492320927233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is growing clinical need and interest to implement novel risk prediction tools in bicuspid aortic valve-associated proximal aortic disease, so-called bicuspid aortic valve aortopathy. Inherent limitations of the diameter-based risk stratification for adverse aortic events in bicuspid aortic valve aortopathy patients have recently been recognized. Therefore, alternative diagnostic tools and subsequent adjustments in the treatment guidelines are urgently needed. Herein, we summarize the current evidence on recent diagnostic developments to improve risk stratification in bicuspid aortic valve aortopathy, including circulating microRNAs as biomarkers to predict the progression of aortic disease.
Collapse
Affiliation(s)
- Shiho Naito
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg
| | | | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center Hamburg
| | | | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg
| |
Collapse
|
20
|
Ma X, Zhao D, Yuan P, Li J, Yun Y, Cui Y, Zhang T, Ma J, Sun L, Ma H, Zhang Y, Zhang H, Zhang W, Huang J, Zou C, Wang Z. Endothelial-to-Mesenchymal Transition in Calcific Aortic Valve Disease. ACTA CARDIOLOGICA SINICA 2020; 36:183-194. [PMID: 32425433 PMCID: PMC7220963 DOI: 10.6515/acs.202005_36(3).20200213a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
Calcific aortic valve disease (CAVD) represents a significant threat to cardiovascular health worldwide, and the incidence of this sclerocalcific valve disease has rapidly increased along with a rise in life expectancy. Compelling evidence has suggested that CAVD is an actively and finely regulated pathophysiological process even though it has been referred to as "degenerative" for decades. A striking similarity has been noted in the etiopathogenesis between CAVD and atherosclerosis, a classical proliferative sclerotic vascular disease.1 Nevertheless, pharmaceutical trials that attempted to target inflammation and dyslipidemia have produced disappointing results in CAVD. While senescence is a well-documented risk factor, the sophisticated regulatory networks have not been adequately explored underlying the aberrant calcification and osteogenesis in CAVD. Valvular endothelial cells (VECs), a type of resident effector cells in aortic leaflets, are crucial in maintaining valvular integrity and homeostasis, and dysfunctional VECs are a major contributor to disease initiation and progression. Accumulating evidence suggests that VECs undergo a phenotypic and functional transition to mesenchymal or fibroblast-like cells in CAVD, a process known as the endothelial-to-mesenchymal transition (EndMT) process. The relevance of this transition in CAVD has recently drawn great interest due to its importance in both valve genesis at an embryonic stage and CAVD development at an adult stage. Hence EndMT might be a valuable diagnostic and therapeutic target for disease prevention and treatment. This mini-review summarized the relevant literature that delineates the EndMT process and the underlying regulatory networks involved in CAVD.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- School of Medicine, Shandong University, Jinan, Shandong
| | - Peidong Yuan
- School of Medicine, Shandong University, Jinan, Shandong
| | - Jinzhang Li
- College of Basic Medicine, Capital Medical University, Beijing
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Jiwei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Liangong Sun
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Huibo Ma
- Qingdao University Medical College, Qingdao
| | - Yuman Zhang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Junjie Huang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
21
|
Liu Y, Jiang Y, Li W, Han C, Zhou L, Hu H. MicroRNA-200c-3p inhibits proliferation and migration of renal artery endothelial cells by directly targeting ZEB2. Exp Cell Res 2019; 387:111778. [PMID: 31881206 DOI: 10.1016/j.yexcr.2019.111778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023]
Abstract
Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation, and oxidative stress, all of which may contribute to renal damage. It is well established that microRNAs (miRNAs) play crucial regulatory roles in the pathogenesis of hypertensive renal damage. However, the detailed mechanisms and regulatory roles of miRNAs as therapeutic targets underlying Ang II-induced renal artery endothelial cell dysfunction in hypertensive renal damage have yet to be fully elucidated. The present study aimed to explore the expression status and putative role of miRNA-200c-3p in mediating the progression of hypertensive renal damage. We carried out real-time quantitative PCR (RT-qPCR) to detect the expression of miRNA-200c-3p in rat renal artery endothelial cells (RRAECs) induced by Ang II. MTT and transwell assays were utilized to evaluate the effects of miRNA-200c-3p on cell proliferation and migration, respectively. The present results revealed that the expression of miRNA-200c-3p was significantly upregulated in RRAECs exposed to Ang II compared with that of normal cells. miRNA-200c-3p overexpression markedly inhibited cell proliferation and migration of Ang II-induced RRAECs. Furthermore, bioinformatics predictions and dual-luciferase reporter assays indicated that zinc finger E-box-binding homeobox 2 (ZEB2) was a direct target gene of miRNA-200c-3p and that ZEB2 expression was inversely correlated with the levels of miRNA-200c-3p in RRAECs after exposure to Ang II. The effects of ZEB2 silencing were similar to the inhibitory effects observed following miRNA-200c-3p overexpression, and recovered ZEB2 expression reversed the anti-proliferative and anti-migratory influence of miRNA-200c-3p upregulation in RRAECs induced by Ang II. The present study indicated that miRNA-200c-3p might suppress the proliferation and migration of Ang II-induced RRAECs by targeting ZEB2. The miRNA-200c-3p/ZEB2 axis will provide valuable insights into the clinical management of hypertension-related kidney disease.
Collapse
Affiliation(s)
- Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Yuehua Jiang
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Cong Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Le Zhou
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Hongzhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| |
Collapse
|
22
|
Du X, Tu Y, Liu S, Zhao P, Bao Z, Li C, Li J, Pan M, Ji J. LINC00511 contributes to glioblastoma tumorigenesis and epithelial-mesenchymal transition via LINC00511/miR-524-5p/YB1/ZEB1 positive feedback loop. J Cell Mol Med 2019; 24:1474-1487. [PMID: 31856394 PMCID: PMC6991637 DOI: 10.1111/jcmm.14829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 01/25/2023] Open
Abstract
Tumour invasion is closely related to the prognosis and recurrence of glioblastoma multiforme and partially attributes to epithelial‐mesenchymal transition. Long intergenic non‐coding RNA 00511 (LINC00511) plays a pivotal role in tumour; however, the role of LINC00511 in GBM, especially in the epigenetic molecular regulation mechanism of EMT, is still unclear. Here, we found that LINC00511 was up‐regulated in GBM tissues and relatively high LINC00511 expression predicted poorer prognosis. Moreover, ectopic LINC00511 enhanced GBM cells proliferation, EMT, migration and invasion, whereas LINC00511 knockdown had the opposite effects. Mechanistically, we confirmed that ZEB1 acted as a transcription factor for LINC00511 in GBM cells. Subsequently, we found that LINC00511 served as a competing endogenous RNA that sponged miR‐524‐5p to indirectly regulate YB1, whereas, up‐regulated YB1 promoted ZEB1 expression, which inversely facilitated LINC00511 expression. Finally, orthotopic xenograft models were performed to further demonstrate the LINC00511 on GBM tumorigenesis. This study demonstrates that a LINC00511/miR‐524‐5p/YB1/ZEB1 positive feedback loop provides potential therapeutic targets for GBM progression.
Collapse
Affiliation(s)
- Xiaoliu Du
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuang Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chong Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhao Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minhong Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Maleki S, Poujade FA, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front Cardiovasc Med 2019; 6:182. [PMID: 31921896 PMCID: PMC6928128 DOI: 10.3389/fcvm.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.
Collapse
Affiliation(s)
- Shohreh Maleki
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Flore-Anne Poujade
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Karin Lång
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
24
|
Hulshoff MS, del Monte-Nieto G, Kovacic J, Krenning G. Non-coding RNA in endothelial-to-mesenchymal transition. Cardiovasc Res 2019; 115:1716-1731. [PMID: 31504268 PMCID: PMC6755356 DOI: 10.1093/cvr/cvz211] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the process wherein endothelial cells lose their typical endothelial cell markers and functions and adopt a mesenchymal-like phenotype. EndMT is required for development of the cardiac valves, the pulmonary and dorsal aorta, and arterial maturation, but activation of the EndMT programme during adulthood is believed to contribute to several pathologies including organ fibrosis, cardiovascular disease, and cancer. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, modulate EndMT during development and disease. Here, we review the mechanisms by which non-coding RNAs facilitate or inhibit EndMT during development and disease and provide a perspective on the therapeutic application of non-coding RNAs to treat fibroproliferative cardiovascular disease.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen, The Netherlands
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | | | - Jason Kovacic
- Dept. Cardiology, Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen, The Netherlands
| |
Collapse
|
25
|
Endothelial Colony Forming Cells as an Autologous Model to Study Endothelial Dysfunction in Patients with a Bicuspid Aortic Valve. Int J Mol Sci 2019; 20:ijms20133251. [PMID: 31269711 PMCID: PMC6651394 DOI: 10.3390/ijms20133251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is associated with an increased prevalence of aortic dilation, aortic rupture and aortic valve calcification. Endothelial cells (ECs) play a major role in vessel wall integrity. Little is known regarding EC function in BAV patients due to lack of patient derived primary ECs. Endothelial colony forming cells (ECFCs) have been reported to be a valid surrogate model for several cardiovascular pathologies, thereby facilitating an in vitro system to assess patient-specific endothelial dysfunction. Therefore, the aim of this study was to investigate cellular functions in ECFCs isolated from BAV patients. Outgrowth and proliferation of ECFCs from patients with BAV (n = 34) and controls with a tricuspid aortic valve (TAV, n = 10) were determined and related to patient characteristics. Interestingly, we were only able to generate ECFCs from TAV and BAV patients without aortic dilation, and failed to isolate ECFC colonies from patients with a dilated aorta. Analyzing EC function showed that while proliferation, cell size and endothelial-to-mesenchymal transition were similar in TAV and BAV ECFCs, migration and the wound healing capacity of BAV ECFCs is significantly higher compared to TAV ECFCs. Furthermore, calcification is blunted in BAV compared to TAV ECFCs. Our results reveal ECs dysfunction in BAV patients and future research is required to unravel the underlying mechanisms and to further validate ECFCs as a patient-specific in vitro model for BAV.
Collapse
|
26
|
Pulignani S, Borghini A, Andreassi MG. microRNAs in bicuspid aortic valve associated aortopathy: Recent advances and future perspectives. J Cardiol 2019; 74:297-303. [PMID: 31230901 DOI: 10.1016/j.jjcc.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023]
Abstract
The risk of acute aortic events in patients with bicuspid aortic valve (BAV) constitutes a medical concern in terms of timing and surgical decision. During the past years, there has been a growing interest in the potential of microRNAs (miRNAs) as crucial epigenetic factors in multiple cellular processes associated with BAV aortopathy. Nevertheless, there are still challenges that need to be overcome before miRNAs could enter clinical practice, and further validation studies in larger and well-defined BAV cohorts are now required. This review aims at providing a comprehensive overview of the available data on the expression profiles and function of specific miRNAs in BAV aortopathy, evaluating miRNA signatures as potential molecular markers of disease. We also discuss the role of other novel classes of non-coding RNAs, including long non-coding RNAs and circular RNAs, in BAV-associated aortopathy, mainly regarding their possible implementation as diagnostic and prognostic markers.
Collapse
|
27
|
Messner B, Bernhard D. Bicuspid aortic valve-associated aortopathy: Where do we stand? J Mol Cell Cardiol 2019; 133:76-85. [PMID: 31152748 DOI: 10.1016/j.yjmcc.2019.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/30/2023]
Abstract
Herein we summarize the current knowledge on the bicuspid aortic valve (BAV)-associated aortopathy regarding clinical presentation and disease sub-classification, genetic background, hemodynamics, histopathology, cells and signaling, animal models, and biomarkers. Despite enormous efforts in research in all of the above areas, important issues remain unknown: (i) what is the ontogenetic basis of BAV development? (ii) how can we explain the diversity of BAV and associated aortopathy phenotypes? (iii) what are the signaling processes in aortopathy pathogenesis and how can we interfere with these processes? Despite undoubtedly great progress that has been made in the understanding of BAV-associated aortopathy, so far researchers have put together a heap of Lego bricks, but at present it is unclear if the bricks are compatible, how they fit together, and which parts are missing to build the true model of the BAV aorta. A joint approach is needed to accelerate research progress.
Collapse
Affiliation(s)
- Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - David Bernhard
- Center for Medical Research, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
28
|
Balistreri CR, Forte M, Greco E, Paneni F, Cavarretta E, Frati G, Sciarretta S. An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132:146-153. [PMID: 31103478 DOI: 10.1016/j.yjmcc.2019.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart malformation frequently associated with the development of aortic valve diseases and severe aortopathy, such as aortic dilatation, aneurysm and dissection. To date, different genetic loci have been identified in syndromic and non- syndromic forms of BAV. Among these, genes involved in the regulation of extracellular matrix remodelling, epithelial to mesenchymal transition and nitric oxide metabolism appear to be the main contributors to BAV pathogenesis. However, no- single gene model explains BAV inheritance, suggesting that more factors are simultaneously involved. In this regard, characteristic epigenetic and immunological profiles have been documented to contradistinguish BAV individuals. In this review, we provide a comprehensive overview addressing molecular mechanisms involved in BAV development and progression.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | | | - Ernesto Greco
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
29
|
Mohamed SA. MicroRNA detection in the pathogenesis of BAV-associated aortopathy-mediated vascular remodelling through EndMT/EMT. J Intern Med 2019; 285:115-117. [PMID: 30478994 DOI: 10.1111/joim.12856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, Luebeck University Hospital, Luebeck, Germany
| |
Collapse
|
30
|
Maleki S, Cottrill KA, Poujade FA, Bhattachariya A, Bergman O, Gådin JR, Simon N, Lundströmer K, Franco-Cereceda A, Björck HM, Chan SY, Eriksson P. The mir-200 family regulates key pathogenic events in ascending aortas of individuals with bicuspid aortic valves. J Intern Med 2019; 285:102-114. [PMID: 30280445 PMCID: PMC6488227 DOI: 10.1111/joim.12833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND An individual with a bicuspid aortic valve (BAV) runs a substantially higher risk of developing aneurysm in the ascending aorta compared to the normal population with tricuspid aortic valves (TAV). Aneurysm formation in patients with BAV and TAV is known to be distinct at the molecular level but the underlying mechanisms are undefined. Here, we investigated the still incompletely described role of microRNAs (miRNAs), important post-transcriptional regulators of gene expression, in such aortic disease of patients with BAV as compared with TAV. METHODS AND RESULTS Using a system biology approach, based on data obtained from proteomic analysis of non-dilated aortas from BAV and TAV patients, we constructed a gene-interaction network of regulatory microRNAs associated with the observed differential protein signature. The miR-200 family was the highest ranked miRNA, hence potentially having the strongest effect on the signalling network associated with BAV. Further, qRT-PCR and ChIP analyses showed lower expression of miR-200c, higher expression of miR-200 target genes, ZEB1/ZEB2 transcription factors, and higher chromatin occupancy of the miR-200c promoter by ZEB1/ZEB2 in BAV patients, indicating a miR-200c/ZEBs negative feedback loop and induction of endothelial/epithelial mesenchymal transition (EndMT/EMT). CONCLUSION We propose that a miR-200-dependent process of EndMT/EMT is a plausible biological mechanism rendering the BAV ascending aorta more prone to aneurysm development. Although initially supported by a miR-200c/ZEB feedback loop, this process is most probably advanced by cooperation of other miRNAs.
Collapse
Affiliation(s)
- S Maleki
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - K A Cottrill
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - F-A Poujade
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - A Bhattachariya
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - O Bergman
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - J R Gådin
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - N Simon
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - K Lundströmer
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - A Franco-Cereceda
- Karolinska University Hospital, Solna, Sweden.,Department of Molecular Medicine and Surgery, Cardiothoracic Surgery Unit, Karolinska Institutet, Stockholm, Sweden
| | - H M Björck
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - S Y Chan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - P Eriksson
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| |
Collapse
|