1
|
Steenhout C, Deprez L, Hustinx R, Withofs N. Brain Tumor Assessment: Integrating PET/Computed Tomography and MR Imaging Modalities. PET Clin 2025; 20:165-174. [PMID: 39477722 DOI: 10.1016/j.cpet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
While MR imaging is the main imaging modality to assess brain tumors, PET imaging has a specific role. Among the many tracers that have been proposed and are still being developed, 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and O-(2-[18F]-fluoroethyl)-l-tyrosine ([18F]FET) PET remain the most solidly established in the clinics. In particular, [18F]FET has gained increased acceptance due to its higher sensitivity. In this paper, we present an overview of the current clinical status of brain tumor imaging, with emphasis on PET imaging.
Collapse
Affiliation(s)
- Camille Steenhout
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Louis Deprez
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium.
| |
Collapse
|
2
|
Niu X, Chang T, Yang Y, Mao Q. Prognostic nomogram models for predicting survival probability in elderly glioblastoma patients. J Cancer Res Clin Oncol 2023; 149:14145-14157. [PMID: 37552311 DOI: 10.1007/s00432-023-05232-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE To investigate the prognostic factors of survival and develop a predictive nomogram model for elderly GBM patients. METHODS Elderly patients (> = 65 years) with histologically diagnosed GBM were extracted from the SEER database. Survival analysis of overall survival (OS) was performed by Kaplan-Meier analysis. Univariate and multivariate Cox regression analyses were used to determine independent prognostic factors and these factors were used to further construct the nomogram model. RESULTS A total of 9068 elderly GBM patients (5122 males and 3946 females) were included, with a median age of 72 years (65-96 years). All patients were divided randomly into the training group (n = 6044) and the validation group (n = 3024) by a ratio of 2:1. Cox regression analyses on OS showed eight independent prognostic factors (race, age, tumor side, tumor size, metastasis, surgery, radiotherapy, and chemotherapy) in the training cohort. Also, seven variables (except for race) were identified on CSS in the training group. By comprising these variables, the nomogram models on OS and CSS for predicting the 6-month, 1-year, and 2-year survival probability were constructed and exhibited moderate consistency, respectively. Then, they could be validated well in the validation cohort and by C-index, time-dependent ROC curve, calibration plot, and DCA curve. CONCLUSIONS Nomogram models on OS and CSS could provide an applicable tool to predict the survival probability and provide clinical references regarding treatment strategies and prognosis.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Tao Chang
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yuan Yang
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Qing Mao
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
3
|
11C-methionine PET imaging characteristics in children with diffuse intrinsic pontine gliomas and relationship to survival and H3 K27M mutation status. Eur J Nucl Med Mol Imaging 2023; 50:1709-1719. [PMID: 36697961 DOI: 10.1007/s00259-022-06105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to describe 11C-methionine (11C-MET) PET imaging characteristics in patients with paediatric diffuse intrinsic pontine glioma (DIPG) and correlate them with survival and H3 K27M mutation status. METHODS We retrospectively analysed 98 children newly diagnosed with DIPG who underwent 11C-MET PET. PET imaging characteristics evaluated included uptake intensity, uniformity, metabolic tumour volume (MTV), and total lesion methionine uptake (TLMU). The maximum, mean, and peak of the tumour-to-background ratio (TBR), calculated as the corresponding standardised uptake values (SUV) divided by the mean reference value, were also recorded. The associations between the PET imaging characteristics and clinical outcomes in terms of progression-free survival (PFS) and overall survival (OS) and H3 K27M mutation status were assessed, respectively. RESULTS In univariate analysis, imaging characteristics significantly associated with shorter PFS and OS included a higher uniformity grade, higher TBRs, larger MTV, and higher TLMU. In multivariate analysis, larger MTV at diagnosis, shorter symptom duration, and no treatment were significantly correlated with shorter PFS and OS. The PET imaging features were not correlated with H3 K27M mutation status. CONCLUSION Although several imaging features were significantly associated with PFS and OS, only MTV, indicating the size of the active tumour, was identified as a strong independent prognostic factor.
Collapse
|
4
|
Muthukumar S, Darden J, Crowley J, Witcher M, Kiser J. A Comparison of PET Tracers in Recurrent High-Grade Gliomas: A Systematic Review. Int J Mol Sci 2022; 24:ijms24010408. [PMID: 36613852 PMCID: PMC9820099 DOI: 10.3390/ijms24010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Humans with high-grade gliomas have a poor prognosis, with a mean survival time of just 12-18 months for patients who undergo standard-of-care tumor resection and adjuvant therapy. Currently, surgery and chemoradiotherapy serve as standard treatments for this condition, yet these can be complicated by the tumor location, growth rate and recurrence. Currently, gadolinium-based, contrast-enhanced magnetic resonance imaging (CE-MRI) serves as the predominant imaging modality for recurrent high-grade gliomas, but it faces several drawbacks, including its inability to distinguish tumor recurrence from treatment-related changes and its failure to reveal the entirety of tumor burden (de novo or recurrent) due to limitations inherent to gadolinium contrast. As such, alternative imaging modalities that can address these limitations, including positron emission tomography (PET), are worth pursuing. To this end, the identification of PET-based markers for use in imaging of recurrent high-grade gliomas is paramount. This review will highlight several PET radiotracers that have been implemented in clinical practice and provide a comparison between them to assess the efficacy of these tracers.
Collapse
Affiliation(s)
| | - Jordan Darden
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | | | - Mark Witcher
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | - Jackson Kiser
- Carilion Clinic Radiology, Roanoke, VA 24016, USA
- Correspondence:
| |
Collapse
|
5
|
Withofs N, Kumar R, Alavi A, Hustinx R. Facts and Fictions About [ 18F]FDG versus Other Tracers in Managing Patients with Brain Tumors: It Is Time to Rectify the Ongoing Misconceptions. PET Clin 2022; 17:327-342. [PMID: 35717096 DOI: 10.1016/j.cpet.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MRI is the first-choice imaging technique for brain tumors. Positron emission tomography can be combined together with multiparametric MRI to increase diagnostic confidence. Radiolabeled amino acids have gained wide clinical acceptance. The reported pooled specificity of [18F]FDG positron emission tomography is high and [18F]FDG might still be the first-choice positron emission tomography tracer in cases of World Health Organization grade 3 to 4 gliomas or [18F]FDG-avid tumors, avoiding the use of more expensive and less available radiolabeled amino acids. The present review discusses the additional value of positron emission tomography with a focus on [18F]FDG and radiolabeled amino acids.
Collapse
Affiliation(s)
- Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital, 1, Liege 1 4000, Belgium; GIGA-CRC in vivo imaging, University of Liege, GIGA CHU - B34 Quartier Hôpital Avenue de l'Hôpital,11, 4000 Liège, Belgium.
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital, 1, Liege 1 4000, Belgium; GIGA-CRC in vivo imaging, University of Liege, GIGA CHU - B34 Quartier Hôpital Avenue de l'Hôpital,11, 4000 Liège, Belgium
| |
Collapse
|
6
|
Parent EE, Johnson DR, Gleason T, Villanueva-Meyer JE. Neuro-Oncology Practice Clinical Debate: FDG PET to differentiate glioblastoma recurrence from treatment-related changes. Neurooncol Pract 2021; 8:518-525. [PMID: 34594566 PMCID: PMC8475205 DOI: 10.1093/nop/npab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability to accurately differentiate treatment-related changes (ie, pseudoprogression and radiation necrosis) from recurrent glioma remains a critical diagnostic problem in neuro-oncology. Because these entities are treated differently and have vastly different outcomes, accurate diagnosis is necessary to provide optimal patient care. In current practice, this diagnostic quandary commonly requires either serial imaging or histopathologic tissue confirmation. In this article, experts in the field debate the utility of 2-deoxy-2[18F]fluoro-d-glucose positron emission tomography (FDG PET) as an imaging tool to distinguish tumor recurrence from treatment-related changes in a patient with glioblastoma and progressive contrast enhancement on magnetic resonance (MR) following chemoradiotherapy.
Collapse
Affiliation(s)
- Ephraim E Parent
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tyler Gleason
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Xu Y, He X, Li Y, Pang P, Shu Z, Gong X. The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. J Magn Reson Imaging 2021; 54:571-583. [PMID: 33559302 DOI: 10.1002/jmri.27536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Glioblastomas (GBMs) represent both the most common and the most highly malignant primary brain tumors. The subjective visual imaging features from MRI make it challenging to predict the overall survival (OS) of GBM. Radiomics can quantify image features objectively as an emerging technique. A pragmatic and objective method in the clinic to assess OS is strongly in need. PURPOSE To construct a radiomics nomogram to stratify GBM patients into long- vs. short-term survival. STUDY TYPE Retrospective. POPULATION One-hundred and fifty-eight GBM patients from Brain Tumor Segmentation Challenge 2018 (BRATS2018) were for model construction and 32 GBM patients from the local hospital for external validation. FIELD STRENGTH/SEQUENCE 1.5 T and 3.0 T MRI Scanners, T1 WI, T2 WI, T2 FLAIR, and contrast-enhanced T1 WI sequences ASSESSMENT: All patients were divided into long-term or short-term based on a survival of greater or fewer than 12 months. All BRATS2018 subjects were divided into training and test sets, and images were assessed for ependymal and pia mater involvement (EPI) and multifocality by three experienced neuroradiologists. All tumor tissues from multiparametric MRI were fully automatically segmented into three subregions to calculate the radiomic features. Based on the training set, the most powerful radiomic features were selected to constitute radiomic signature. STATISTICAL TESTS Receiver operating characteristic (ROC) curve, sensitivity, specificity, and the Hosmer-Lemeshow test. RESULTS The nomogram had a survival prediction accuracy of 0.878 and 0.875, a specificity of 0.875 and 0.583, and a sensitivity of 0.704 and 0.833, respectively, in the training and test set. The ROC curve showed the accuracy of the nomogram, radiomic signature, age, and EPI for external validation set were 0.858, 0.826, 0.664, and 0.66 in the validate set, respectively. DATA CONCLUSION Radiomics nomogram integrated with radiomic signature, EPI, and age was found to be robust for the stratification of GBM patients into long- vs. short-term survival. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaodong He
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yumei Li
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Quartuccio N, Laudicella R, Vento A, Pignata S, Mattoli MV, Filice R, Comis AD, Arnone A, Baldari S, Cabria M, Cistaro A. The Additional Value of 18F-FDG PET and MRI in Patients with Glioma: A Review of the Literature from 2015 to 2020. Diagnostics (Basel) 2020; 10:357. [PMID: 32486075 PMCID: PMC7345880 DOI: 10.3390/diagnostics10060357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Beyond brain computed tomography (CT) scan, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) hold paramount importance in neuro-oncology. The aim of this narrative review is to discuss the literature from 2015 to 2020, showing advantages or complementary information of fluorine-18 fluorodeoxyglucose (18F-FDG) PET imaging to the anatomical and functional data offered by MRI in patients with glioma. METHODS A comprehensive Pubmed/MEDLINE literature search was performed to retrieve original studies, with a minimum of 10 glioma patients, published from 2015 until the end of April 2020, on the use of 18F-FDG PET in conjunction with MRI. RESULTS Twenty-two articles were selected. Combined use of the two modalities improves the accuracy in predicting prognosis, planning treatments, and evaluating recurrence. CONCLUSION According to the recent literature, 18F-FDG PET provides different and complementary information to MRI and may enhance performance in the whole management of gliomas. Therefore, integrated PET/MRI may be particularly useful in gliomas, since it could provide accurate morphological and metabolic information in one-shoot examination and improve the diagnostic value compared to each of procedures.
Collapse
Affiliation(s)
- Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (N.Q.); (A.A.)
- Committee of AIMN Pediatric Study Group, 20159 Milan, Italy
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
- AIMN -Italian Association of Nuclear Medicine- Young Members Working Group, 20159 Milan, Italy
| | - Antonio Vento
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Salvatore Pignata
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Maria Vittoria Mattoli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy;
| | - Rossella Filice
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Alessio Danilo Comis
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Annachiara Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (N.Q.); (A.A.)
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Manlio Cabria
- Nuclear Medicine Department, Ente Ospedaliero Ospedali Galliera, Italy, Mura delle Cappuccine, 14, 16128 Genova, Italy;
| | - Angelina Cistaro
- Nuclear Medicine Department, Ente Ospedaliero Ospedali Galliera, Italy, Mura delle Cappuccine, 14, 16128 Genova, Italy;
- Committee of AIMN Neuroimaging Study Group, 20159 Milan, Italy
- Coordinator of AIMN Paediatric Study Group, 20159 Milan, Italy
| |
Collapse
|
9
|
Moreau A, Febvey O, Mognetti T, Frappaz D, Kryza D. Contribution of Different Positron Emission Tomography Tracers in Glioma Management: Focus on Glioblastoma. Front Oncol 2019; 9:1134. [PMID: 31737567 PMCID: PMC6839136 DOI: 10.3389/fonc.2019.01134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Although rare, glioblastomas account for the majority of primary brain lesions, with a dreadful prognosis. Magnetic resonance imaging (MRI) is currently the imaging method providing the higher resolution. However, it does not always succeed in distinguishing recurrences from non-specific temozolomide, have been shown to improve -related changes caused by the combination of radiotherapy, chemotherapy, and targeted therapy, also called pseudoprogression. Strenuous attempts to overcome this issue is highly required for these patients with a short life expectancy for both ethical and economic reasons. Additional reliable information may be obtained from positron emission tomography (PET) imaging. The development of this technique, along with the emerging of new classes of tracers, can help in the diagnosis, prognosis, and assessment of therapies. We reviewed the current data about the commonly used tracers, such as 18F-fluorodeoxyglucose (18F-FDG) and radiolabeled amino acids, as well as different PET tracers recently investigated, to report their strengths, limitations, and relevance in glioblastoma management.
Collapse
Affiliation(s)
| | | | | | | | - David Kryza
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS Villeurbanne, Villeurbanne, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Zhang Q, Gao X, Wei G, Qiu C, Qu H, Zhou X. Prognostic Value of MTV, SUVmax and the T/N Ratio of PET/CT in Patients with Glioma: A Systematic Review and Meta-Analysis. J Cancer 2019; 10:1707-1716. [PMID: 31205526 PMCID: PMC6548003 DOI: 10.7150/jca.28605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: In the past decade, positron emission tomography/computed tomography (PET/CT) has become an important imaging tool for clinical assessment of tumor patients. Our meta-analysis aimed to compare the predictive value of PET/CT parameters regard to overall survival (OS) and progression-free survival (PFS) outcomes in glioma. Methods: Relevant articles were systematically searched in PMC, PubMed, EMBASE and WEB of science. Studies involving the prognostic roles of PET/CT parameters with OS and PFS in glioma patients were evaluated. The impact of metabolic tumor volume (MTV), maximal standard uptake value (SUVmax), and the ratio of uptake in tumor to normal (T/N ratio) on survival was measured by calculating combined hazard ratios (HRs) and 95% confidence intervals (CIs). Results: A total of 32 articles with 1715 patients were included. The combined HRs of higher MTV, higher SUVmax and higher T/N ratio for OS were 1.14 (95% CI: 0.98-1.32, P heterogeneity<0.001), 1.69 (95% CI: 1.18-2.41, P heterogeneity<0.001) and 1.68 (95% CI: 1.40-2.01, P heterogeneity< 0.001), respectively. Regarding PFS, the combined HRs were 1.04 (95% CI: 0.97-1.11, P heterogeneity=0.002) with higher MTV, 1.45 (95% CI: 1.11-1.90, P heterogeneity<0.001) with higher SUVmax and 2.07 (95% CI: 1.45-2.95, P heterogeneity<0.001) with higher T/N ratio. Results remained similar in the sub-group analyses. Conclusion: PET/CT parameters T/N ratio may be a significant prognostic factor in patients with glioma. Evidence of SUVmax and MTV needed more large-scale studies performed to validate. PET/CT scan could be a promising technique to provide prognostic information for these patients.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xian Gao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guohua Wei
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cheng Qiu
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Hongyi Qu
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
11
|
Toriihara A, Ohtake M, Tateishi K, Hino-Shishikura A, Yoneyama T, Kitazume Y, Inoue T, Kawahara N, Tateishi U. Prognostic implications of 62Cu-diacetyl-bis (N 4-methylthiosemicarbazone) PET/CT in patients with glioma. Ann Nucl Med 2018; 32:264-271. [PMID: 29453680 DOI: 10.1007/s12149-018-1241-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The potential of positron emission tomography/computed tomography using 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) (62Cu-ATSM PET/CT), which was originally developed as a hypoxic tracer, to predict therapeutic resistance and prognosis has been reported in various cancers. Our purpose was to investigate prognostic value of 62Cu-ATSM PET/CT in patients with glioma, compared to PET/CT using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). METHOD 56 patients with glioma of World Health Organization grade 2-4 were enrolled. All participants had undergone both 62Cu-ATSM PET/CT and 18F-FDG PET/CT within mean 33.5 days prior to treatment. Maximum standardized uptake value and tumor/background ratio were calculated within areas of increased radiotracer uptake. The prognostic significance for progression-free survival and overall survival were assessed by log-rank test and Cox's proportional hazards model. RESULTS Disease progression and death were confirmed in 37 and 27 patients in follow-up periods, respectively. In univariate analysis, there was significant difference of both progression-free survival and overall survival in age, tumor grade, history of chemoradiotherapy, maximum standardized uptake value and tumor/background ratio calculated using 62Cu-ATSM PET/CT. Multivariate analysis revealed that maximum standardized uptake value calculated using 62Cu-ATSM PET/CT was an independent predictor of both progression-free survival and overall survival (p < 0.05). In a subgroup analysis including patients of grade 4 glioma, only the maximum standardized uptake values calculated using 62Cu-ATSM PET/CT showed significant difference of progression-free survival (p < 0.05). CONCLUSIONS 62Cu-ATSM PET/CT is a more promising imaging method to predict prognosis of patients with glioma compared to 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Akira Toriihara
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Ohtake
- Departments of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kensuke Tateishi
- Departments of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ayako Hino-Shishikura
- Departments of Radiology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tomohiro Yoneyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshio Kitazume
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tomio Inoue
- Departments of Radiology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Nobutaka Kawahara
- Departments of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
12
|
Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R, Shungu DC. Magnetic Resonance Spectroscopy, Positron Emission Tomography and Radiogenomics-Relevance to Glioma. Front Neurol 2018; 9:33. [PMID: 29459844 PMCID: PMC5807339 DOI: 10.3389/fneur.2018.00033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Advances in metabolic imaging techniques have allowed for more precise characterization of gliomas, particularly as it relates to tumor recurrence or pseudoprogression. Furthermore, the emerging field of radiogenomics where radiographic features are systemically correlated with molecular markers has the potential to achieve the holy grail of neuro-oncologic neuro-radiology, namely molecular diagnosis without requiring tissue specimens. In this section, we will review the utility of metabolic imaging and discuss the current state of the art related to the radiogenomics of glioblastoma.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Ilhami Kovanlikaya
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Changho Choi
- Radiology, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
13
|
Margiewicz S, Cordova C, Chi AS, Jain R. State of the Art Treatment and Surveillance Imaging of Glioblastomas. Semin Roentgenol 2017; 53:23-36. [PMID: 29405952 DOI: 10.1053/j.ro.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Christine Cordova
- Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY
| | - Rajan Jain
- Department of Radiology, NYU School of Medicine, New York, NY; Department of Neurosurgery, NYU School of Medicine, New York, NY.
| |
Collapse
|
14
|
Schweitzer AD, Chiang GC, Ivanidze J, Baradaran H, Young RJ, Zimmerman RD. Regarding "Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study". AJNR Am J Neuroradiol 2016; 38:E18-E19. [PMID: 27908871 DOI: 10.3174/ajnr.a5019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A D Schweitzer
- Department of Radiology Weill Cornell Medicine New York, New York
| | - G C Chiang
- Department of Radiology Weill Cornell Medicine New York, New York
| | - J Ivanidze
- Department of Radiology Weill Cornell Medicine New York, New York.,Department of Radiology Memorial Sloan Kettering Cancer Center New York, New York
| | - H Baradaran
- Department of Radiology Weill Cornell Medicine New York, New York.,Department of Radiology Memorial Sloan Kettering Cancer Center New York, New York
| | - R J Young
- Department of Radiology Memorial Sloan Kettering Cancer Center New York, New York
| | - R D Zimmerman
- Department of Radiology Weill Cornell Medicine New York, New York
| |
Collapse
|