1
|
Salman F, Ramesh A, Jochmann T, Prayer M, Adegbemigun A, Reeves JA, Wilding GE, Cho J, Jakimovski D, Bergsland N, Dwyer MG, Zivadinov R, Schweser F. Sensitivity of Quantitative Susceptibility Mapping for Clinical Research in Deep Gray Matter. Hum Brain Mapp 2025; 46:e70187. [PMID: 40260740 PMCID: PMC12012649 DOI: 10.1002/hbm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 04/24/2025] Open
Abstract
Quantitative susceptibility mapping (QSM) is an advanced MRI technique for assessing iron, calcium, and myelin tissue levels based on magnetic susceptibility. QSM consists of multiple processing steps, with various choices for each step. While QSM is increasingly applied in neurodegenerative disease research, its reproducibility and sensitivity in detecting susceptibility changes across groups or over time, which underpin the interpretation of clinical outcomes, have not been thoroughly quantified. This study aimed to evaluate how choices in background field removal (BFR), dipole inversion algorithms, and anatomical referencing impact the detection of changes in deep gray matter susceptibility. We used aging-related changes in brain iron, established in earlier foundational studies, as a surrogate model to test the sensitivity and reproducibility of 378 different QSM pipelines toward the detection of longitudinal susceptibility changes in a clinical setting. We used 10-year follow-up data and scan-rescan data of healthy adults scanned at 3T. Our results demonstrated high variability in the sensitivity of QSM pipelines toward detecting susceptibility changes. While most pipelines detected the same over-time changes, the choice of the BFR algorithm and the referencing strategy influenced reproducibility error and sensitivity substantially. Notably, pipelines using RESHARP with AMP-PE, HEIDI, or LSQR inversion showed the highest overall sensitivity. The findings suggest a strong impact of algorithmic choices in QSM processing on the ability to detect physiological changes in the brain. Careful consideration should be given to the pipeline configuration for reliable clinical outcomes.
Collapse
Affiliation(s)
- Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Department of Biomedical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Abhisri Ramesh
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Thomas Jochmann
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Department of Computer Science and AutomationTechnische Universität IlmenauIlmenauGermany
| | - Mirjam Prayer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Ademola Adegbemigun
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Jack A. Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Gregory E. Wilding
- Department of BiostatisticsSchool of Public Health and Health Professions, State University of New York at BuffaloBuffaloNew YorkUSA
| | - Junghun Cho
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Department of Biomedical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical ImagingClinical and Translational Science Institute, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical ImagingClinical and Translational Science Institute, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical ImagingClinical and Translational Science Institute, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
2
|
Salman F, Bergsland N, Dwyer MG, Reeves JA, Ramesh A, Jakimovski D, Weinstock-Guttman B, Zivadinov R, Schweser F. Thalamic iron in multiple sclerosis: Waning support for the early-rise late-decline hypothesis. Neuroimage Clin 2025; 46:103771. [PMID: 40187193 PMCID: PMC12002950 DOI: 10.1016/j.nicl.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Studies of thalamic iron levels in multiple sclerosis (MS) have yielded variable findings, potentially due to differences in study cohorts. For example, studies in relatively young cohorts (average ages below 40 years) have reported elevated susceptibility in people with MS (pwMS), whereas studies in older cohorts (above 40 years) found decreased susceptibility. OBJECTIVE To test the "early-rise late-decline" hypothesis, which posits that age differences in study cohorts are responsible for conflicting findings regarding thalamic susceptibility in MS. METHODS We chose to replicate one of the previous studies that showed evidence of elevated thalamic iron concentrations in younger pwMS (Rudko et al., 2014). We also replicated a study involving older pwMS (Pudlac et al., 2020) to serve as a control. We assessed thalamic susceptibility using the QSM processing and analysis methodology outlined by Rudko et al. RESULTS: Although cohort characteristics, QSM processing, and analytical methods were closely matched, we found significantly lower thalamic susceptibility in the younger pwMS compared to controls (-1.1 ± 7.8 vs. 5.4 ± 6.1 ppb; effect sizes: -0.35 to -0.91). Study outcomes were robust across a wide range of regularization parameters, with effect size differences influenced by background field removal regularization. A similar pattern was observed in the older cohort, where thalamic susceptibility was again lower in pwMS compared to controls (4.0 ± 9.5 vs. 9.6 ± 10.7 ppb; effect size: -0.55). CONCLUSIONS Our findings contradict the "early rise" hypothesis of thalamic iron levels in pwMS. The consistency of our results across multiple analyses suggests that QSM processing artifacts are unlikely to explain previous reports of increased thalamic iron. Instead, these variations may stem from demographic or clinical differences, such as geographical factors and treatment regimens.
Collapse
Affiliation(s)
- Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Abhisri Ramesh
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Wynn Hospital, Mohawk Valley Health System, Utica, NY, United States
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
3
|
Cherukara MT, Shmueli K. Comparing repeatability metrics for quantitative susceptibility mapping in the head and neck. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01229-3. [PMID: 40024974 DOI: 10.1007/s10334-025-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Quantitative susceptibility mapping (QSM) is a technique that has been demonstrated to be highly repeatable in the brain. As QSM is applied to other parts of the body, it is necessary to investigate metrics for quantifying repeatability, to enable optimization of repeatable QSM reconstruction pipelines beyond the brain. MATERIALS AND METHODS MRI data were acquired in the head and neck (HN) region in ten healthy volunteers, who underwent six acquisitions across two sessions. QSMs were reconstructed using six representative state-of-the-art techniques. Repeatability of the susceptibility values was compared using voxel-wise metrics (normalized root mean squared error and XSIM) and ROI-based metrics (within-subject and between-subject standard deviation, coefficient of variation (CV), intraclass correlation coefficient (ICC)). RESULTS Both within-subject and between-subject variations were smaller than the variation between QSM dipole inversion methods, in most ROIs. autoNDI produced the most repeatable susceptibility values, with ICC > 0.75 in three of six HN ROIs with an average ICC of 0.66 across all ROIs. Joint consideration of standard deviation and ICC offered the best metric of repeatability for comparisons between QSM methods, given typical distributions of positive and negative QSM values. DISCUSSION Repeatability of QSM in the HN region is highly dependent on the dipole inversion method chosen, but the most repeatable methods (autoNDI, QSMnet, TFI) are only moderately repeatable in most HN ROIs.
Collapse
Affiliation(s)
- Matthew T Cherukara
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
4
|
de Laat B, Hoye J, Stanley G, Hespeler M, Ligi J, Mohan V, Wooten DW, Zhang X, Nguyen TD, Key J, Colonna G, Huang Y, Nabulsi N, Patel A, Matuskey D, Morris ED, Tinaz S. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:34. [PMID: 38336768 PMCID: PMC10858031 DOI: 10.1038/s41531-024-00641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons. Exercise has been reported to slow the clinical progression of PD. We evaluated the dopaminergic system of patients with mild and early PD before and after a six-month program of intense exercise. Using 18F-FE-PE2I PET imaging, we measured dopamine transporter (DAT) availability in the striatum and substantia nigra. Using NM-MRI, we evaluated the neuromelanin content in the substantia nigra. Exercise reversed the expected decrease in DAT availability into a significant increase in both the substantia nigra and putamen. Exercise also reversed the expected decrease in neuromelanin concentration in the substantia nigra into a significant increase. These findings suggest improved functionality in the remaining dopaminergic neurons after exercise. Further research is needed to validate our findings and to pinpoint the source of any true neuromodulatory and neuroprotective effects of exercise in PD in large clinical trials.
Collapse
Affiliation(s)
- Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Jocelyn Hoye
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Gelsina Stanley
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | | | | | | | - Thanh D Nguyen
- Department of Radiology, Weil Cornell Medicine, New York, NY, USA
| | - Jose Key
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Giulia Colonna
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Amar Patel
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Tozlu C, Olafson E, Jamison KW, Demmon E, Kaunzner U, Marcille M, Zinger N, Michaelson N, Safi N, Nguyen T, Gauthier S, Kuceyeski A. The sequence of regional structural disconnectivity due to multiple sclerosis lesions. Brain Commun 2023; 5:fcad332. [PMID: 38107503 PMCID: PMC10724045 DOI: 10.1093/braincomms/fcad332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Prediction of disease progression is challenging in multiple sclerosis as the sequence of lesion development and retention of inflammation within a subset of chronic lesions is heterogeneous among patients. We investigated the sequence of lesion-related regional structural disconnectivity across the spectrum of disability and cognitive impairment in multiple sclerosis. In a full cohort of 482 multiple sclerosis patients (age: 41.83 ± 11.63 years, 71.57% females), the Expanded Disability Status Scale was used to classify patients into (i) no or mild (Expanded Disability Status Scale <3) versus (ii) moderate or severe disability groups (Expanded Disability Status Scale ≥3). In 363 out of 482 patients, quantitative susceptibility mapping was used to identify paramagnetic rim lesions, which are maintained by a rim of iron-laden innate immune cells. In 171 out of 482 patients, Brief International Cognitive Assessment was used to identify subjects as being cognitively preserved or impaired. Network Modification Tool was used to estimate the regional structural disconnectivity due to multiple sclerosis lesions. Discriminative event-based modelling was applied to investigate the sequence of regional structural disconnectivity due to (i) all representative T2 fluid-attenuated inversion recovery lesions, (ii) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across disability groups ('no to mild disability' to 'moderate to severe disability'), (iii) all representative T2 fluid-attenuated inversion recovery lesions and (iv) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across cognitive status ('cognitively preserved' to 'cognitively impaired'). In the full cohort, structural disconnection in the ventral attention and subcortical networks, particularly in the supramarginal and putamen regions, was an early biomarker of moderate or severe disability. The earliest biomarkers of disability progression were structural disconnections due to paramagnetic rim lesions in the motor-related regions. Subcortical structural disconnection, particularly in the ventral diencephalon and thalamus regions, was an early biomarker of cognitive impairment. Our data-driven model revealed that the structural disconnection in the subcortical regions, particularly in the thalamus, is an early biomarker for both disability and cognitive impairment in multiple sclerosis. Paramagnetic rim lesions-related structural disconnection in the motor cortex may identify the patients at risk for moderate or severe disability in multiple sclerosis. Such information might be used to identify people with multiple sclerosis who have an increased risk of disability progression or cognitive decline in order to provide personalized treatment plans.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Emily Olafson
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Keith W Jamison
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Nara Michaelson
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Neha Safi
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Susan Gauthier
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| |
Collapse
|
6
|
Tozlu C, Olafson E, Jamison K, Demmon E, Kaunzner U, Marcille M, Zinger N, Michaelson N, Safi N, Nguyen T, Gauthier S, Kuceyeski A. The sequence of regional structural disconnectivity due to multiple sclerosis lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525537. [PMID: 36747675 PMCID: PMC9900990 DOI: 10.1101/2023.01.26.525537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective Prediction of disease progression is challenging in multiple sclerosis (MS) as the sequence of lesion development and retention of inflammation within a subset of chronic lesions is heterogeneous among patients. We investigated the sequence of lesion-related regional structural disconnectivity across the spectrum of disability and cognitive impairment in MS. Methods In a full cohort of 482 patients, the Expanded Disability Status Scale was used to classify patients into (i) no or mild vs (ii) moderate or severe disability groups. In 363 out of 482 patients, Quantitative Susceptibility Mapping was used to identify paramagnetic rim lesions (PRL), which are maintained by a rim of iron-laden innate immune cells. In 171 out of 482 patients, Brief International Cognitive Assessment was used to identify subjects with cognitive impairment. Network Modification Tool was used to estimate the regional structural disconnectivity due to MS lesions. Discriminative event-based modeling was applied to investigate the sequence of regional structural disconnectivity due to all representative lesions across the spectrum of disability and cognitive impairment. Results Structural disconnection in the ventral attention and subcortical networks was an early biomarker of moderate or severe disability. The earliest biomarkers of disability progression were structural disconnections due to PRL in the motor-related regions. Subcortical structural disconnection was an early biomarker of cognitive impairment. Interpretation MS lesion-related structural disconnections in the subcortex is an early biomarker for both disability and cognitive impairment in MS. PRL-related structural disconnection in the motor cortex may identify the patients at risk for moderate or severe disability in MS.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Olafson
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Nara Michaelson
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Neha Safi
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Naji N, Lauzon ML, Seres P, Stolz E, Frayne R, Lebel C, Beaulieu C, Wilman AH. Multisite reproducibility of quantitative susceptibility mapping and effective transverse relaxation rate in deep gray matter at 3 T using locally optimized sequences in 24 traveling heads. NMR IN BIOMEDICINE 2022; 35:e4788. [PMID: 35704837 DOI: 10.1002/nbm.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Iron concentration in the human brain plays a crucial role in several neurodegenerative diseases and can be monitored noninvasively using quantitative susceptibility mapping (QSM) and effective transverse relaxation rate (R2 *) mapping from multiecho T2 *-weighted images. Large population studies enable better understanding of pathologies and can benefit from pooling multisite data. However, reproducibility may be compromised between sites and studies using different hardware and sequence protocols. This work investigates QSM and R2 * reproducibility at 3 T using locally optimized sequences from three centers and two vendors, and investigates possible reduction of cross-site variability through postprocessing approaches. Twenty-four healthy subjects traveled between three sites and were scanned twice at each site. Scan-rescan measurements from seven deep gray matter regions were used for assessing within-site and cross-site reproducibility using intraclass correlation coefficient (ICC) and within-subject standard deviation (SDw) measures. In addition, multiple QSM and R2 * postprocessing options were investigated with the aim to minimize cross-site sequence-related variations, including: mask generation approach, echo-timing selection, harmonizing spatial resolution, field map estimation, susceptibility inversion method, and linear field correction for magnitude images. The same-subject cross-site region of interest measurements for QSM and R2 * were highly correlated (R2 ≥ 0.94) and reproducible (mean ICC of 0.89 and 0.82 for QSM and R2 *, respectively). The mean cross-site SDw was 4.16 parts per billion (ppb) for QSM and 1.27 s-1 for R2 *. For within-site measurements of QSM and R2 *, the mean ICC was 0.97 and 0.87 and mean SDw was 2.36 ppb and 0.97 s-1 , respectively. The precision level is regionally dependent and is reduced in the frontal lobe, near brain edges, and in white matter regions. Cross-site QSM variability (mean SDw) was reduced up to 46% through postprocessing approaches, such as masking out less reliable regions, matching available echo timings and spatial resolution, avoiding the use of the nonconsistent magnitude contrast between scans in field estimation, and minimizing streaking artifacts.
Collapse
Affiliation(s)
- Nashwan Naji
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - M Louis Lauzon
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Stolz
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Chiang GC, Cho J, Dyke J, Zhang H, Zhang Q, Tokov M, Nguyen T, Kovanlikaya I, Amoashiy M, de Leon M, Wang Y. Brain oxygen extraction and neural tissue susceptibility are associated with cognitive impairment in older individuals. J Neuroimaging 2022; 32:697-709. [PMID: 35294075 DOI: 10.1111/jon.12990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effects of aging, white matter hyperintensities (WMH), and cognitive impairment on brain iron levels and cerebral oxygen metabolism, known to be altered in Alzheimer's disease (AD), using quantitative susceptibility mapping and MR-based cerebral oxygen extraction fraction (OEF). METHODS In 100 individuals over the age of 50 (68/32 cognitively impaired/intact), OEF and neural tissue susceptibility (χn ) were computed retrospectively from MRI multi-echo gradient echo data, obtained on a 3 Tesla MRI scanner. The effects of age and WMH on OEF and χn were assessed within groups, and OEF and χn were assessed between groups, using multivariate regression analyses. RESULTS Cognitively impaired subjects were found to have 19% higher OEF and 34% higher χn than cognitively intact subjects in the cortical gray matter and several frontal, temporal, and parietal regions (p < .05). Increased WMH burden was significantly associated with decreased OEF in the cognitively impaired, but not in the cognitively intact. Older age had a stronger association with decreased OEF in the cognitively intact group. Both older age and increased WMH burden were significantly associated with increased χn in temporoparietal regions in the cognitively impaired. CONCLUSIONS Higher brain OEF and χn in cognitively impaired older individuals may reflect altered oxygen metabolism and iron in areas with underlying AD pathology. Both age and WMH have associations with OEF and χn but are modified by the presence of cognitive impairment.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Junghun Cho
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Jonathan Dyke
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, New York, USA
| | - Hang Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qihao Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michael Tokov
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, New York, USA
| | - Thanh Nguyen
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ilhami Kovanlikaya
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Michael Amoashiy
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Mony de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yi Wang
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
9
|
Zachariou V, Bauer CE, Powell DK, Gold BT. Ironsmith: An Automated Pipeline for QSM-based Data Analyses. Neuroimage 2021; 249:118835. [PMID: 34936923 PMCID: PMC8935985 DOI: 10.1016/j.neuroimage.2021.118835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based, computational method for anatomically localizing and measuring concentrations of specific biomarkers in tissue such as iron. Growing research suggests QSM is a viable method for evaluating the impact of iron overload in neurological disorders and on cognitive performance in aging. Several software toolboxes are currently available to reconstruct QSM maps from 3D GRE MR Images. However, few if any software packages currently exist that offer fully automated pipelines for QSM-based data analyses: from DICOM images to region-of-interest (ROI) based QSM values. Even less QSM-based software exist that offer quality control measures for evaluating the QSM output. Here, we address these gaps in the field by introducing and demonstrating the reliability and external validity of Ironsmith; an open-source, fully automated pipeline for creating and processing QSM maps, extracting QSM values from subcortical and cortical brain regions (89 ROIs) and evaluating the quality of QSM data using SNR measures and assessment of outlier regions on phase images. Ironsmith also features automatic filtering of QSM outlier values and precise CSF-only QSM reference masks that minimize partial volume effects. Testing of Ironsmith revealed excellent intra- and inter-rater reliability. Finally, external validity of Ironsmith was demonstrated via an anatomically selective relationship between motor performance and Ironsmith-derived QSM values in motor cortex. In sum, Ironsmith provides a freely-available, reliable, turn-key pipeline for QSM-based data analyses to support research on the impact of brain iron in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States
| | - David K Powell
- Department of Neuroscience, Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States
| | - Brian T Gold
- Department of Neuroscience, Sanders-Brown Center on Aging, Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States.
| |
Collapse
|
10
|
Tozlu C, Jamison K, Nguyen T, Zinger N, Kaunzner U, Pandya S, Wang Y, Gauthier S, Kuceyeski A. Structural disconnectivity from paramagnetic rim lesions is related to disability in multiple sclerosis. Brain Behav 2021; 11:e2353. [PMID: 34498432 PMCID: PMC8553317 DOI: 10.1002/brb3.2353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In people with multiple sclerosis (pwMS), lesions with a hyperintense rim (rim+) on Quantitative Susceptibility Mapping (QSM) have been shown to have greater myelin damage compared to rim- lesions, but their association with disability has not yet been investigated. Furthermore, how QSM rim+ and rim- lesions differentially impact disability through their disruptions to structural connectivity has not been explored. We test the hypothesis that structural disconnectivity due to rim+ lesions is more predictive of disability compared to structural disconnectivity due to rim- lesions. METHODS Ninety-six pwMS were included in our study. Individuals with Expanded Disability Status Scale (EDSS) <2 were considered to have lower disability (n = 59). For each gray matter region, a Change in Connectivity (ChaCo) score, that is, the percent of connecting streamlines also passing through a rim- or rim+ lesion, was computed. Adaptive Boosting was used to classify the pwMS into lower versus greater disability groups based on ChaCo scores from rim+ and rim- lesions. Classification performance was assessed using the area under ROC curve (AUC). RESULTS The model based on ChaCo from rim+ lesions outperformed the model based on ChaCo from rim- lesions (AUC = 0.67 vs 0.63, p-value < .05). The left thalamus and left cerebellum were the most important regions in classifying pwMS into disability categories. CONCLUSION rim+ lesions may be more influential on disability through their disruptions to the structural connectome than rim- lesions. This study provides a deeper understanding of how rim+ lesion location/size and resulting disruption to the structural connectome can contribute to MS-related disability.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Huang W, Ogbuji R, Zhou L, Guo L, Wang Y, Kopell BH. Motoric impairment versus iron deposition gradient in the subthalamic nucleus in Parkinson's disease. J Neurosurg 2021; 135:284-290. [PMID: 32764171 DOI: 10.3171/2020.5.jns201163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/12/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the correlation between the quantitative susceptibility mapping (QSM) signal gradient of the subthalamic nucleus (STN) and motor impairment in patients with Parkinson's disease (PD). METHODS All PD patients who had undergone QSM MRI for presurgical deep brain stimulation (DBS) planning were eligible for inclusion in this study. The entire STN and its three functional subdivisions, as well as the adjacent white matter (WM), were segmented and measured. The QSM value difference between the entire STN and adjacent WM (STN-WM), between the limbic and associative regions of the STN (L-A), and between the associative and motor regions of the STN (A-M) were obtained as measures of gradient and were input into an unsupervised k-means clustering algorithm to automatically categorize the overall boundary distinctness between the STN and adjacent WM and between STN subdivisions (gradient blur [GB] and gradient sharp [GS] groups). Statistical tests were performed to compare clinical and image measurements for discrimination between GB and GS groups. RESULTS Of the 39 study patients, 19 were categorized into the GB group and 20 into the GS group, based on quantitative cluster analysis. The GB group had a significantly higher presurgical off-medication Unified Parkinson's Disease Rating Scale Part III score (51.289 ± 20.741) than the GS group (38.5 ± 16.028; p = 0.037). The GB group had significantly higher QSM values for the STN and its three subdivisions and adjacent WM than those for the GS group (p < 0.01). The GB group also demonstrated a significantly higher STN-WM gradient in the right STN (p = 0.01). The GB group demonstrated a significantly lower L-A gradient in both the left and the right STN (p < 0.02). CONCLUSIONS Advancing PD with more severe motor impairment leads to more iron deposition in the STN and adjacent WM, as shown in the QSM signal. Loss of the STN inner QSM signal gradient should be considered as an image marker for more severe motor impairment in PD patients.
Collapse
Affiliation(s)
- Weiyuan Huang
- 1Department of Radiology, Weill Medical College of Cornell University, New York
- 7Department of Radiology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou City, People's Republic of China
| | | | - Liangdong Zhou
- 1Department of Radiology, Weill Medical College of Cornell University, New York
| | - Lingfei Guo
- 1Department of Radiology, Weill Medical College of Cornell University, New York
| | - Yi Wang
- 1Department of Radiology, Weill Medical College of Cornell University, New York
- 6Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; and
| | - Brian H Kopell
- Departments of2Neurosurgery
- 3Neurology
- 4Psychiatry, and
- 5Neuroscience, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
12
|
Treit S, Naji N, Seres P, Rickard J, Stolz E, Wilman AH, Beaulieu C. R2* and quantitative susceptibility mapping in deep gray matter of 498 healthy controls from 5 to 90 years. Hum Brain Mapp 2021; 42:4597-4610. [PMID: 34184808 PMCID: PMC8410539 DOI: 10.1002/hbm.25569] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Putative MRI markers of iron in deep gray matter have demonstrated age related changes during discrete periods of healthy childhood or adulthood, but few studies have included subjects across the lifespan. This study reports both transverse relaxation rate (R2*) and quantitative susceptibility mapping (QSM) of four primary deep gray matter regions (thalamus, putamen, caudate, and globus pallidus) in 498 healthy individuals aged 5–90 years. In the caudate, putamen, and globus pallidus, increases of QSM and R2* were steepest during childhood continuing gradually throughout adulthood, except caudate susceptibility which reached a plateau in the late 30s. The thalamus had a unique profile with steeper changes of R2* (reflecting additive effects of myelin and iron) than QSM during childhood, both reaching a plateau in the mid‐30s to early 40s and decreasing thereafter. There were no hemispheric or sex differences for any region. Notably, both R2* and QSM values showed more inter‐subject variability with increasing age from 5 to 90 years, potentially reflecting a common starting point in iron/myelination during childhood that diverges as a result of lifestyle and genetic factors that accumulate with age.
Collapse
Affiliation(s)
- Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nashwan Naji
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Rickard
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Stolz
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Qu Z, Yang S, Xing F, Tong R, Yang C, Guo R, Huang J, Lu F, Fu C, Yan X, Hectors S, Gillen K, Wang Y, Liu C, Zhan S, Li J. Magnetic resonance quantitative susceptibility mapping in the evaluation of hepatic fibrosis in chronic liver disease: a feasibility study. Quant Imaging Med Surg 2021; 11:1170-1183. [PMID: 33816158 DOI: 10.21037/qims-20-720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Noninvasive methods for the early diagnosis and staging of hepatic fibrosis are needed. The present study aimed to investigate the alteration of magnetic susceptibility in the liver of patients with various fibrosis stages and to evaluate the feasibility of using susceptibility to stage hepatic fibrosis. Methods A total of 30 consecutive patients with chronic liver diseases (CLDs) underwent magnetic resonance imaging (MRI) and liver biopsy evaluation of hepatic fibrosis, necroinflammatory activity, iron load, and steatosis. Quantitative susceptibility mapping (QSM), R2* and proton density fat fraction (PDFF) images were postprocessed from the same gradient-echo data for quantitative tissue characterization using region of interest (ROI) analysis. The differences for MRI measurements between cohorts of non-significant (Ishak-F <3) and significant fibrosis (Ishak-F ≥3) and the correlation of MRI measurements with fibrosis stages and necroinflammatory activity grades were tested. Receiver operating characteristic (ROC) analysis was also performed. Results There was a significant difference in liver susceptibility between the cohorts of significant and non-significant fibrosis (Z=-2.880, P=0.004). A moderate negative correlation between the stages of liver fibrosis and liver susceptibility was observed (r=-0.471, P=0.015). Liver magnetic susceptibility differentiated non-significant from significant hepatic fibrosis with an area under the receiver operating curve (AUC) of 0.836 (P=0.004). A highly sensitive diagnostic performance with an AUC of 0.933 was obtained using magnetic susceptibility and PDFF together (P<0.001). Conclusions A noninvasive liver QSM-based evaluation promises an accurate assessment of significant fibrosis in patients with CLDs.
Collapse
Affiliation(s)
- Zheng Qu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Shuohui Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Xing
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Tong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Chenyao Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongfang Guo
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiling Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caixia Fu
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
| | - Xu Yan
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
| | - Stefanie Hectors
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Kelly Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chenghai Liu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
Voelker MN, Kraff O, Goerke S, Laun FB, Hanspach J, Pine KJ, Ehses P, Zaiss M, Liebert A, Straub S, Eckstein K, Robinson S, Nagel AN, Stefanescu MR, Wollrab A, Klix S, Felder J, Hock M, Bosch D, Weiskopf N, Speck O, Ladd ME, Quick HH. The traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla. Neuroimage 2021; 232:117910. [PMID: 33647497 DOI: 10.1016/j.neuroimage.2021.117910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECT This study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging. MATERIAL AND METHODS Two subjects - termed the "traveling heads" - were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined. RESULTS Quantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed. CONCLUSION Our results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain.
Collapse
Affiliation(s)
- Maximilian N Voelker
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Moritz Zaiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andrzej Liebert
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Korbinian Eckstein
- High Field MR Center, Department for Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Simon Robinson
- High Field MR Center, Department for Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Armin N Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Astrid Wollrab
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Hock
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Dario Bosch
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Oliver Speck
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
许 欢, 孟 庆, 樊 文, 王 雪, 刘 梦, 陈 志. [Reproducibility analysis of quantitative susceptibility mapping of cerebral subcortical nuclei in healthy adults]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1810-1815. [PMID: 33380400 PMCID: PMC7835684 DOI: 10.12122/j.issn.1673-4254.2020.12.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the intra- and inter-scanner reproducibility of quantitative susceptibility mapping (QSM) of cerebral subcortical nuclei in healthy adults. METHODS QSM was performed in 21 healthy adults on two different 3.0T MR scanners, and the region of interest (ROI) method was used to measure the magnetic susceptibility value of the left subcortical nuclei (the head of the caudate, putamen, globus pallidus, thalamus, substantia nigra and red nucleus). The intraclass correlation coefficient (ICC) and Bland-Altman method were used to evaluate the inter-scanner and intra-scanner reliability. RESULTS The ICCs of the susceptibility value ranged from 0.90 to 0.99 for all the subcortical gray nuclei except for the head of the caudate nucleus measured on the same MR scanner by the same observer. Bland-Altman analysis revealed that the points with susceptibility differences for all the subcortical gray nuclei except for substantia nigra located in the 95% CI of limits of agreement for the same MR scanner. The ICCs of the susceptibility value for the inter-scanner was 0.49 (0.08-0.75) for the head of the caudate nuleus, 0.80 (0.57-0.91) for the putamen, 0.77 (0.51-0.90) for the globus pallidus, 0.78 (0.54-0.91) for the thalamus, 0.80 (0.56-0.91) for the substantia nigra and 0.93 (0.83-0.97) for the red nucleus. The points with susceptibility difference (95.2%, 20/21) located in the 95% CI of limits of agreement for the putamen and the thalamus measured on two different MR scanners. CONCLUSIONS The intra-scanner reproducibility of QSM of the subcortical gray nuclei is superior to the inter-scanner reproducibility in healthy adults.
Collapse
Affiliation(s)
- 欢 许
- 海南省儋州市人民医院放射科,海南 儋州 571700Department of Radiology, Danzhou People's Hospital, Danzhou 571700, China
| | - 庆林 孟
- 解放军总医院海南医院放射科,海南 三亚 572013Department of Radiology, Hainan Hospital Affiliated to General Hospital of PLA, Sanya 572013, China
| | - 文萍 樊
- 解放军总医院海南医院放射科,海南 三亚 572013Department of Radiology, Hainan Hospital Affiliated to General Hospital of PLA, Sanya 572013, China
| | - 雪 王
- 解放军总医院海南医院放射科,海南 三亚 572013Department of Radiology, Hainan Hospital Affiliated to General Hospital of PLA, Sanya 572013, China
| | - 梦琦 刘
- 解放军总医院海南医院放射科,海南 三亚 572013Department of Radiology, Hainan Hospital Affiliated to General Hospital of PLA, Sanya 572013, China
- 解放军总医院第一医学中心放射科,北京 100853Department of Radiology, First Medical Center of General Hospital of PLA, Beijing 100853, China
| | - 志晔 陈
- 解放军总医院海南医院放射科,海南 三亚 572013Department of Radiology, Hainan Hospital Affiliated to General Hospital of PLA, Sanya 572013, China
| |
Collapse
|
16
|
Zhang S, Cho J, Nguyen TD, Spincemaille P, Gupta A, Zhu W, Wang Y. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping. Front Neurosci 2020; 14:535441. [PMID: 33041755 PMCID: PMC7525031 DOI: 10.3389/fnins.2020.535441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
MRI-based oxygen extraction fraction imaging has a great potential benefit in the selection of clinical strategies for ischemic stroke patients. This study aimed to evaluate the performance of a challenge-free oxygen extraction fraction (OEF) mapping in a cohort of acute and subacute ischemic stroke patients. Consecutive ischemic stroke patients (a total of 30 with 5 in the acute stage, 19 in the early subacute stage, and 6 in the late subacute stage) were recruited. All subjects underwent MRI including multi-echo gradient echo (mGRE), diffusion weighted imaging (DWI), and 3D-arterial spin labeling (ASL). OEF maps were generated from mGRE phase + magnitude data, which were processed using quantitative susceptibility mapping (QSM) + quantitative blood oxygen level-dependent (qBOLD) imaging with cluster analysis of time evolution. Cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) maps were reconstructed from 3D-ASL and DWI, respectively. Further, cerebral metabolic rate of oxygen (CMRO2) was calculated as the product of CBF and OEF. OEF, CMRO2, CBF, and ADC values in the ischemic cores (absolute values) and their contrasts to the contralateral regions (relative values) were evaluated. One-way analysis of variance (ANOVA) was used to compare OEF, CMRO2, CBF, and ADC values and their relative values among different stroke stages. The OEF value of infarct core showed a trend of decrease from acute, to early subacute, and to late subacute stages of ischemic stroke. Significant differences among the three stroke stages were only observed in the absolute OEF (F = 6.046, p = 0.005) and relative OEF (F = 5.699, p = 0.009) values of the ischemic core, but not in other measurements (absolute and relative CMRO2, CBF, ADC values, all values of p > 0.05). In conclusion, the challenge-free QSM + qBOLD-generated OEF mapping can be performed on stroke patients. It can provide more information on tissue viability that was not available with CBF and ADC and, thus, may help to better manage ischemic stroke patients.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Multi-centre, multi-vendor reproducibility of 7T QSM and R 2* in the human brain: Results from the UK7T study. Neuroimage 2020; 223:117358. [PMID: 32916289 PMCID: PMC7480266 DOI: 10.1016/j.neuroimage.2020.117358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction We present the reliability of ultra-high field T2* MRI at 7T, as part of the UK7T Network's “Travelling Heads” study. T2*-weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and R2* maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. The relaxation parameters of human brain tissue are such that R2* mapping and QSM show particularly strong gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5–3T). We aimed to determine the inter-subject and inter-site reproducibility of QSM and R2* mapping at 7T, in readiness for future multi-site clinical studies. Methods Ten healthy volunteers were scanned with harmonised single- and multi-echo T2*-weighted gradient echo pulse sequences. Participants were scanned five times at each “home” site and once at each of four other sites. The five sites had 1× Philips, 2× Siemens Magnetom, and 2× Siemens Terra scanners. QSM and R2* maps were computed with the Multi-Scale Dipole Inversion (MSDI) algorithm (https://github.com/fil-physics/Publication-Code). Results were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually or by the MNI152 standard space. Results and Discussion Mean susceptibility (χ) and R2* values agreed broadly with literature values in all ROIs. The inter-site within-subject standard deviation was 0.001–0.005 ppm (χ) and 0.0005–0.001 ms−1 (R2*). For χ this is 2.1–4.8 fold better than 3T reports, and 1.1–3.4 fold better for R2*. The median ICC from within- and cross-site R2* data was 0.98 and 0.91, respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas with large B0 inhomogeneity such as the inferior frontal cortex. Across sites, R2* values were more consistent than QSM in subcortical structures due to differences in B0-shimming. On a between-subject level, our measured χ and R2* cross-site variance is comparable to within-site variance in the literature, suggesting that it is reasonable to pool data across sites using our harmonised protocol. Conclusion The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coefficient of reproducibility for QSM and R2* at 7T compared to previous reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site clinical studies at 7T.
Collapse
|
18
|
Cho J, Ma Y, Spincemaille P, Pike GB, Wang Y. Cerebral oxygen extraction fraction: Comparison of dual-gas challenge calibrated BOLD with CBF and challenge-free gradient echo QSM+qBOLD. Magn Reson Med 2020; 85:953-961. [PMID: 32783233 DOI: 10.1002/mrm.28447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To compare cortical gray matter oxygen extraction fraction (OEF) estimated from 2 MRI methods: (1) the quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level dependent imaging (qBOLD) (QSM+qBOLD or QQ), and (2) the dual-gas calibrated-BOLD (DGCB) in healthy subjects; and to investigate the validity of iso-cerebral metabolic rate of oxygen consumption assumption during hypercapnia using QQ. METHODS In 10 healthy subjects, 3 tesla MRI including a multi-echo gradient echo sequence at baseline and hypercapnia for QQ, as well as an EPI dual-echo pseudo-continuous arterial spin labeling for DGCB, were performed under a hypercapnic and a hyperoxic condition. OEFs from QQ and DGCB were compared using region of interest analysis and paired t test. For QQ, cerebral metabolic rate of oxygen consumption = cerebral blood flow*OEF*arterial oxygen content was generated for both baseline and hypercapnia, which were compared. RESULTS Average OEF in cortical gray matter across 10 subjects from QQ versus DGCB was 35.5 ± 6.7% versus 38.0 ± 9.1% (P = .49) at baseline and 20.7 ± 4.4% versus 28.4 ± 7.6% (P = .02) in hypercapnia: OEF in cortical gray matter was significantly reduced as measured in QQ (P < .01) and in DGCB (P < .01). Cerebral metabolic rate of oxygen consumption (in μmol O2 /min/100 g) was 168.2 ± 54.1 at baseline from DGCB and was 153.1 ± 33.8 at baseline and 126.4 ± 34.2 (P < .01) in hypercapnia from QQ. CONCLUSION The differences in OEF obtained from QQ and DGCB are small and nonsignificant at baseline but are statistically significant during hypercapnia. In addition, QQ shows a cerebral metabolic rate of oxygen consumption decrease (17.4%) during hypercapnia.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yuhan Ma
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Gilbert Bruce Pike
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Spincemaille P, Anderson J, Wu G, Yang B, Fung M, Li K, Li S, Kovanlikaya I, Gupta A, Kelley D, Benhamo N, Wang Y. Quantitative Susceptibility Mapping: MRI at 7T versus 3T. J Neuroimaging 2020; 30:65-75. [PMID: 31625646 PMCID: PMC6954973 DOI: 10.1111/jon.12669] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Ultrahigh-field 7T promises more than doubling the signal-to-noise ratio (SNR) of 3T for magnetic resonance imaging (MRI), particularly for MRI of magnetic susceptibility effects induced by B0 . Quantitative susceptibility mapping (QSM) is based on deconvolving the induced phase (or field) and would therefore benefit substantially from 7T. The purpose of this work was to compare QSM performance at 7T versus 3T in an intrascanner test-retest experiment with varying echo numbers (5 and 10 echoes). METHODS A prospective study in N = 10 healthy subjects was carried out at both 3T and 7T field strengths. Gradient echo data using 5 and 10 echoes were acquired twice in each subject. Test-retest reproducibility was assessed using Bland-Altman and regression analysis of region of interest measurements. Image quality was scored by an experienced neuroradiologist. RESULTS Intrascanner bias was below 3.6 parts-per-billion (ppb) with correlation R2 > .85. Interscanner bias was below 10.9 ppb with correlation R2 > .8. The image quality score for the 3T 10 echo protocol was not different from the 7T 5 echo protocol (P = .65). CONCLUSION Excellent image quality and good reproducibility was observed. 7T allows equivalent image quality of 3T in half of the scan time.
Collapse
Affiliation(s)
- Pascal Spincemaille
- Radiology, Weill Cornell Medical College, Cornell
University, New York, NY
- Corresponding author: Pascal Spincemaille, Ph.D.,
Department of Radiology, 515 East 71st St, Suite S101, New York, NY, 10021,
, tel: +1 646 962 2630
| | | | - Gaohong Wu
- General Electrical Healthcare, Waukesha, WI
| | | | | | - Ke Li
- General Electrical Healthcare, Waukesha, WI
| | - Shaojun Li
- Radiology, Weill Cornell Medical College, Cornell
University, New York, NY
| | - Ilhami Kovanlikaya
- Radiology, Weill Cornell Medical College, Cornell
University, New York, NY
| | - Ajay Gupta
- Radiology, Weill Cornell Medical College, Cornell
University, New York, NY
| | | | | | - Yi Wang
- Radiology, Weill Cornell Medical College, Cornell
University, New York, NY
- Department of Biomedical Engineering, Cornell University,
Ithaca, NY
| |
Collapse
|