1
|
Loizzo SK, Prah MA, Kong MJ, Phung D, Urcuyo JC, Ye J, Attenello FJ, Mendoza J, Zhou Y, Shiroishi MS, Hu LS, Schmainda KM. Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol. AJNR Am J Neuroradiol 2025; 46:529-535. [PMID: 39389776 PMCID: PMC11979803 DOI: 10.3174/ajnr.a8531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND PURPOSE A national consensus recommendation for the collection of DSC-MRI perfusion data, used to create maps of relative CBV (rCBV), has been recently established for primary and metastatic brain tumors. The goal was to reduce intersite variability and improve ease of comparison across time and sites, fostering widespread use of this informative measure. To translate this goal into practice, the prospective collection of consensus DSC-MRI data and characterization of derived rCBV maps in brain metastases is needed. The purpose of this multisite study was to determine rCBV in untreated brain metastases in comparison to glioblastoma (GBM) and normal-appearing brain by using the national consensus protocol. MATERIALS AND METHODS Subjects from 3 sites with untreated enhancing brain metastases underwent DSC-MRI according to a recommended option that uses a midrange flip angle, GRE-EPI acquisition, and the administration of both a preload and second DSC-MRI dose of 0.1 mmol/kg gadolinium-based contrast agent. Quantitative maps of standardized relative CBV (srCBV) were generated and enhancing lesion ROIs determined from postcontrast T1-weighted images alone or calibrated difference maps, termed Δ T1 (dT1) maps. Mean srCBV for metastases were compared with normal-appearing white matter (NAWM) and GBM from a previous study. Comparisons were performed by using either the Wilcoxon signed-rank test for paired comparisons or the Mann-Whitney U nonparametric test for unpaired comparisons. RESULTS Forty-nine patients with a primary histology of lung (n = 25), breast (n = 6), squamous cell carcinoma (n = 1), melanoma (n = 5), gastrointestinal (GI) (n = 3), and genitourinary (GU) (n = 9) were included in comparison to GBM (n = 31). The mean srCBV of all metastases (1.83±1.05) were significantly lower (P = .0009) than mean srCBV for GBM (2.67 ± 1.34) with both statistically greater (P < .0001) than NAWM (0.68 ± 0.18). Histologically distinct metastases are each statistically greater than NAWM (P < .0001) with lung (P = .0002) and GU (P = .02) srCBV being significantly different from GBM srCBV. CONCLUSIONS Using the consensus DSC-MRI protocol, mean srCBV values were determined for treatment-naïve brain metastases in comparison to normal-appearing white matter and GBM thus setting the benchmark for all subsequent studies adherent to the national consensus recommendation.
Collapse
Affiliation(s)
- Sarah Kohn Loizzo
- From the Department of Radiation Oncology (S.K.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Min J Kong
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Daniel Phung
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Javier C Urcuyo
- Mathematical Neuro-Oncology Lab (J.C.U.), Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jason Ye
- Department of Radiation Oncology (J.Y.), Keck School of Medicine of USC, Los Angeles, California
| | - Frank J Attenello
- Department of Neurological Surgery (F.J.A.), Keck School of Medicine of USC, Los Angeles, California
| | - Jesse Mendoza
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yuxiang Zhou
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Mark S Shiroishi
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
- Imaging Genetics Center (M.S.S.), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina del Rey, California
- Department of Population and Public Health Sciences (M.S.S.), Keck School of Medicine of USC, Los Angeles, California
| | - Leland S Hu
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
- Department of Cancer Biology (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
- Department of Neurological Surgery (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Obdeijn IV, Wiegers EC, Alic L, Plasschaert SLA, Kranendonk MEG, Hoogduin HM, Klomp DWJ, Wijnen JP, Lequin MH. Amide proton transfer weighted imaging in pediatric neuro-oncology: initial experience. NMR IN BIOMEDICINE 2024; 37:e5122. [PMID: 38369653 DOI: 10.1002/nbm.5122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Amide proton transfer weighted (APTw) imaging enables in vivo assessment of tissue-bound mobile proteins and peptides through the detection of chemical exchange saturation transfer. Promising applications of APTw imaging have been shown in adult brain tumors. As pediatric brain tumors differ from their adult counterparts, we investigate the radiological appearance of pediatric brain tumors on APTw imaging. APTw imaging was conducted at 3 T. APTw maps were calculated using magnetization transfer ratio asymmetry at 3.5 ppm. First, the repeatability of APTw imaging was assessed in a phantom and in five healthy volunteers by calculating the within-subject coefficient of variation (wCV). APTw images of pediatric brain tumor patients were analyzed retrospectively. APTw levels were compared between solid tumor tissue and normal-appearing white matter (NAWM) and between pediatric high-grade glioma (pHGG) and pediatric low-grade glioma (pLGG) using t-tests. APTw maps were repeatable in supratentorial and infratentorial brain regions (wCV ranged from 11% to 39%), except those from the pontine region (wCV between 39% and 50%). APTw images of 23 children with brain tumor were analyzed (mean age 12 years ± 5, 12 male). Significantly higher APTw values are present in tumor compared with NAWM for both pHGG and pLGG (p < 0.05). APTw values were higher in pLGG subtype pilocytic astrocytoma compared with other pLGG subtypes (p < 0.05). Non-invasive characterization of pediatric brain tumor biology with APTw imaging could aid the radiologist in clinical decision-making.
Collapse
Affiliation(s)
- Iris V Obdeijn
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evita C Wiegers
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lejla Alic
- Magnetic Detection and Imaging Group, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Sabine L A Plasschaert
- Department of Pediatric Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariëtte E G Kranendonk
- Department of Diagnostic Laboratory, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans M Hoogduin
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H Lequin
- Department of Pediatric Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Radiology and Nuclear Medicine, University of Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Chen X, Li F, Xu G, Su J, Shi Q, Dai H. Cerebellar Metastasis Manifesting as a Cyst with Mural Nodule(s): Differentiating It From Hemangioblastoma on MRI. World Neurosurg 2023; 175:e994-e1004. [PMID: 37087031 DOI: 10.1016/j.wneu.2023.04.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND A cyst with mural nodule(s) (CMN) is a rare imaging finding of cerebellar metastasis (CMET). It is a great challenge to differentiate it from cerebellar hemangioblastoma (CHB). In the present study, we explore the differences in the magnetic resonance imaging (MRI) characteristics of the 2 tumors. METHODS Patients with pathologically confirmed CMET or CHB at our hospital from July 2009 to September 2021 were enrolled in the present study. All the patients underwent conventional head MRI (before and after contrast administration) before surgery and had ≥1 lesion in the cerebellum that presented as CMN on MRI. The clinical and MRI features were compared between the 2 groups. RESULTS A total of 33 patients (10 with CMET and 23 with CHB) met the study criteria. The CMET patients were significantly older than were the CHB patients (median age, 59.5 years vs. 37 years; P = 0.002). Compared with the CHB group, the CMET group showed significantly higher occurrence rates of multiple mural nodules (72.7% vs. 8.7%), lack of vascular flow voids (100% vs. 65.2%), isointense or hypointense mural nodules on fluid-attenuated inversion recovery imaging (100.0% vs. 22.7%), restricted diffusion of mural nodules (22.2% vs. 0.0%), mildly enhanced mural nodules (90.9% vs. 4.3%), and a ring-enhanced pattern of the cyst wall (100% vs. 8.7%; P < 0.05 for all). CONCLUSIONS When CMN is detected in the cerebellum on MRI, older age, multiple mural nodules, absence of vascular flow voids, isointense or hypointense mural nodule on fluid-attenuated inversion recovery sequence, restricted diffusion of the mural nodule, mildly enhanced mural nodules, and a ring-enhanced pattern of the cyst wall are the clinical and imaging features that strongly indicate the likelihood of metastasis, rather than CHB.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Fangling Li
- Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gaoqiang Xu
- Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Su
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingyang Shi
- Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hui Dai
- Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|