1
|
Jasiński T, Turek B, Kaczorowski M, Brehm W, Skierbiszewska K, Bonecka J, Domino M. Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines 2024; 12:542. [PMID: 38540155 PMCID: PMC10968442 DOI: 10.3390/biomedicines12030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
Osteoarthritis (OA) of the temporomandibular joint (TMJ) occurs spontaneously in humans and various animal species, including horses. In humans, obtaining tissue samples is challenging and clinical symptoms appear late in the disease progression. Therefore, genetically modified, induced, and naturally occurring animal models play a crucial role in understanding the pathogenesis and evaluating potential therapeutic interventions for TMJ OA. Among the naturally occurring models, the equine TMJ OA model is characterized by slow, age-related progression, a wide range of clinical examinations, and imaging modalities that can be performed on horses, as well as easy tissue and synovial fluid collection. The morphological and functional similarities of TMJ structures in both species make the equine model of TMJ OA an excellent opportunity to track disease progression and response to treatment. However, much work remains to be carried out to determine the utility of human TMJ OA biomarkers in horses. Among the main TMJ OA biomarkers, IL-1, IL-6, TGF-β, TNF-α, and PGE2 have been recently investigated in the equine model. However, the majority of biomarkers for cartilage degradation, chondrocyte hypertrophy, angiogenesis, and TMJ overload-as well as any of the main signaling pathways-have not been studied so far. Therefore, it would be advisable to focus further research on equine specimens, considering both mediators and signaling.
Collapse
Affiliation(s)
- Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | - Bernard Turek
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | | | - Walter Brehm
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, 04103 Leipzig, Germany;
| | - Katarzyna Skierbiszewska
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | - Joanna Bonecka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| |
Collapse
|
2
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
3
|
Wang XJ, Tian W, Xu WW, Lu X, Zhang YM, Li LJ, Chang F. Loss of Autophagy Causes Increased Apoptosis of Tibial Plateau Chondrocytes in Guinea Pigs with Spontaneous Osteoarthritis. Cartilage 2021; 13:796S-807S. [PMID: 34493119 PMCID: PMC8804872 DOI: 10.1177/19476035211044820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The goal of the present study was to observe the effect of autophagy in tibial plateau chondrocytes on apoptosis in spontaneous knee osteoarthritis (OA) in guinea pigs. DESIGN Fifty 2-month-old female Hartley guinea pigs were divided into a normal group (10 animals, all euthanized after 7 months) and an OA group (40 animals, 10 of which were euthanized after 10 months). Immunohistochemistry, RT-qPCR and Western blotting were used to evaluate autophagy levels, intracellular glycogen accumulation and apoptosis in tibial plateau chondrocytes in vivo and in vitro. The remaining 30 guinea pigs in the OA group were divided into 3 groups: a rapamycin group, a normal saline group, and a 3-methyladenine (3-MA) group. Intracellular glycogen accumulation and chondrocyte apoptosis were assessed by altering the level of autophagy in chondrocytes in vivo. RESULTS When spontaneous OA occurred in guinea pigs, autophagy levels in tibial plateau chondrocytes decreased, while intracellular glycogen accumulation and the rate of chondrocyte apoptosis increased. After enhancing the level of autophagy in tibial plateau chondrocytes in guinea pigs with OA, intracellular glycogen accumulation and the rate of chondrocyte apoptosis decreased, while inhibiting autophagy had the opposite effects. CONCLUSION The results indicate that the function of autophagy in chondrocytes may at least partly involve the catabolism of glycogen. In guinea pigs with OA, the level of autophagy in tibial plateau chondrocytes decreased, and chondrocytes were unable to degrade intracellular glycogen into glucose, leading to less energy for chondrocytes and increased apoptosis.
Collapse
Affiliation(s)
- Xiao-jian Wang
- Department of Orthopaedic
Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Wei Tian
- Department of Orthopaedic
Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Wei-wei Xu
- Shanxi Key Laboratory of Kidney
Disease, Taiyuan, China
| | - Xiao Lu
- Shanxi Key Laboratory of Kidney
Disease, Taiyuan, China
| | - Yu-ming Zhang
- Department of Orthopaedic
Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Li-jun Li
- Department of Orthopaedic
Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Feng Chang
- Department of Orthopaedic
Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
4
|
Li B, Guan G, Mei L, Jiao K, Li H. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25:4902-4911. [PMID: 33949768 PMCID: PMC8178251 DOI: 10.1111/jcmm.16514] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.
Collapse
Affiliation(s)
- Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangzhao Guan
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Zhou Y, Lu H, Deng L, Lin CH, Pennington Klein K, Wu M. HMGB2 is associated with pressure loading in chondrocytes of temporomandibular joint: In vitro and in vivo study. Cytokine 2020; 126:154875. [DOI: 10.1016/j.cyto.2019.154875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/14/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
|