1
|
Xi Y, Wang Z, Wei Y, Xiao N, Duan L, Zhao T, Zhang X, Zhang L, Wang J, Li Z, Qin D. Gut Microbiota and Osteoarthritis: From Pathogenesis to Novel Therapeutic Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:43-66. [PMID: 39880660 DOI: 10.1142/s0192415x2550003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease, characterized by cartilage damage, synovial inflammation, subchondral bone sclerosis, marginal bone loss, and osteophyte development. Clinical manifestations include inflammatory joint pain, swelling, osteophytes, and limitation of motion. The pathogenesis of osteoarthritis has not yet been fully uncovered. With ongoing research, however, it has been gradually determined that OA is not caused solely by mechanical injury or aging, but rather involves chronic low-grade inflammation, metabolic imbalances, dysfunctional adaptive immunity, and alterations in central pain processing centers. The main risk factors for OA include obesity, age, gender, genetics, and sports injuries. In recent years, extensive research on gut microbiota has revealed that gut dysbiosis is associated with some common risk factors for OA, and that it may intervene in its pathogenesis through both direct and indirect mechanisms. Therefore, gut flora imbalance as a pathogenic factor in OA has become a hotspot topic of research, with potential therapeutic connotations. In this paper, we review the role of the gut microbiota in the pathogenesis of OA, describe its relationship with common OA risk factors, and address candidate gut microbiota markers for OA diagnosis. In addition, with focus on OA therapies, we discuss the effects of direct and indirect interventions targeting the gut microbiota, as well as the impact of gut bacteria on the efficacy of OA drugs.
Collapse
Affiliation(s)
- Yujiang Xi
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- United Graduate School, China Academy of Chinese Medical Sciences, Suzhou Jiangsu 215000, P. R. China
| | - Zhifeng Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Li Duan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Liping Zhang
- Southern Central Hospital of Yunnan Province, Mengzi Honghe 661100, P. R. China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Dongdong Qin
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| |
Collapse
|
2
|
Zhang Q, Zhao YX, Li LF, Fan QQ, Huang BB, Du HZ, Li C, Li W. Metabolism-Related Adipokines and Metabolic Diseases: Their Role in Osteoarthritis. J Inflamm Res 2025; 18:1207-1233. [PMID: 39886385 PMCID: PMC11780177 DOI: 10.2147/jir.s499835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Osteoarthritis (OA) affects several joints but tends to be more prevalent in those that are weight-bearing, such as the knees, which are the most heavily loaded joints in the body. The incidence and disability rates of OA have continued to increase and seriously jeopardise the quality of life of middle-aged and older adults. However, OA is more than just a wear and tear disease; its aetiology is complex, and its pathogenesis is poorly understood. Metabolic syndrome (MetS) has emerged as a critical driver of OA development. This condition contributes to the formation of a distinct phenotype, termed metabolic syndrome-associated osteoarthritis (MetS-OA),which differs from other metabolically related diseases by its unique pathophysiological mechanisms and clinical presentation. As key mediators of MetS, metabolic adipokines such as leptin, lipocalin, and resistin regulate inflammation and bone metabolism through distinct or synergistic signaling pathways. Their modulation of inflammatory responses and bone remodeling processes plays a critical role in the pathogenesis and progression of OA. Due to their central role in regulating inflammation and bone remodeling, metabolic adipokines not only deepen our understanding of MetS-OA pathogenesis but also represent promising targets for novel therapeutic strategies that could slow disease progression and improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Qian Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Yi Xuan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Long Fei Li
- Cerebrovascular Disease Ward, The First People’s Hospital of Ping Ding Shan, Pingdingshan, Henan, People’s Republic of China
| | - Qian Qian Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Bin Bin Huang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Hong Zhen Du
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Zhang J, Yan C, He W, Wang M, Liu J. Inhibition against p38/MEF2C pathway by Pamapimod protects osteoarthritis chondrocytes hypertrophy. Panminerva Med 2024; 66:365-371. [PMID: 33263251 DOI: 10.23736/s0031-0808.20.04170-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The p38 mitogen-activated protein kinase pathway plays an important role in the pathogenesis of osteoarthritis (OA) involving in hypertrophy, calcification, and apoptosis of chondrocytes (CHs). In this study, we focused on a p38 inhibitor named Pamapimod (PAM) in the effect of CH hypertrophy degeneration. METHODS CHs were isolated from the cartilage collected from OA patients. Insulin-Transferrin-Selenium (ITS) medium was used as a hypertrophic inducer to establish CH hypertrophy model. Asiatic acid (AA) was used to activate p38 phosphorylation. We transfected CHs with myocyte enhancer factor 2C (MEF2C)-plasmid to upregulate MEF2C expression. Chondrogenic gene expression such as type II collagen and SOX-9, and hypertrophic genes such as type X collagen, MMP-13, and Runx-2 were analyzed by western blot, real-time polymerase chain reaction or immunofluorescence. RESULTS ITS and AA all contributed to the CHs hypertrophy with an upregulation of p-p38 and MEF2C protein expression. PAM treatments significantly inhibited p-p38 and MEF2C expression, down-regulated type X collagen, MMP-13, and Runx-2 expression and upregulated type II collagen and SOX-9 levels. PAM indirectly affected MEF2C expression and resulted in CHs hypertrophy suppression. CONCLUSIONS PAM protects CHs hypertrophy by the inhibition of the p38/MEF2C pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chen Yan
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Weidong He
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Min Wang
- Department of Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jian Liu
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China -
| |
Collapse
|
4
|
Liu L, He G, Li Y, Xian Y, He G, Hong Y, Zhang C, Wu D. Hyaluronic Acid-Based Microparticles with Lubrication and Anti-Inflammation for Alleviating Temporomandibular Joint Osteoarthritis. Biomater Res 2024; 28:0073. [PMID: 39247653 PMCID: PMC11377958 DOI: 10.34133/bmr.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
The pathogenesis of temporomandibular joint osteoarthritis (TMJOA) is closely associated with mechanical friction, which leads to the up-regulation of inflammatory mediators and the degradation of articular cartilage. Injectable drug-loaded microparticles have attracted widespread interest in intra-articular treatment of TMJOA by providing lubrication and facilitating localized drug delivery. Herein, a hyaluronic acid-based microparticle is developed with excellent lubrication properties, drug loading capacity, antioxidant activity, and anti-inflammatory effect for the treatment of TMJOA. The microparticles are facilely prepared by the self-assembly of 3-aminophenylboronic acid-modified hyaluronic acid (HP) through hydrophobic interaction in an aqueous solution, which can further encapsulate diol-containing drugs through dynamic boronate ester bonds. The resulting microparticles demonstrate excellent injectability, lubrication properties, radical scavenging efficiency, and antibacterial activity. Additionally, the drug-loaded microparticles exhibit a favorable cytoprotective effect on chondrocyte cells in vitro under an oxidative stress microenvironment. In vivo experiments validate that intra-articular injection of drug-loaded microparticles effectively alleviates osteoporosis-like damage, suppresses inflammatory response, and facilitates matrix regeneration in the treatment of TMJOA. The HP microparticles demonstrate excellent injectability and encapsulation capacity for diol-containing drugs, highlighting its potential as a versatile drug delivery vehicle in the intra-articular treatment of TMJOA.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixian He
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Wu W, Hu A, Xu H, Su J. LincRNA-EPS Alleviates Inflammation in TMJ Osteoarthritis by Binding to SRSF3. J Dent Res 2023; 102:1141-1151. [PMID: 37464762 DOI: 10.1177/00220345231180464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common inflammatory disease that can cause pain, cartilage degradation, and subchondral bone loss. However, the key regulatory factors and new targets for the treatment of TMJOA have yet to be determined. Long noncoding RNAs (lncRNAs) have shown remarkable potential in regulating tissue homeostasis and disease development. The long intergenic RNA-erythroid prosurvival (lincRNA-EPS) is reported to be an effective inhibitor of inflammation, but its role in TMJOA is unexplored. Here, we found that lincRNA-EPS is downregulated and negatively correlated with inflammatory factors in the condyles of TMJOA mice. LincRNA-EPS knockout aggravated inflammation and tissue destruction after TMJOA modeling. The in vitro studies confirmed that loss of lincRNA-EPS facilitated inflammatory factor expression in condylar chondrocytes, while recovered expression of lincRNA-EPS showed anti-inflammatory effects. Mechanistically, RNA sequencing revealed that the inflammatory response pathway nuclear factor-kappa B (NF-κB) was mostly affected by lincRNA-EPS deficiency. Moreover, lincRNA-EPS was proved to effectively bind to serine/arginine-rich splicing factor 3 (SRSF3) and inhibit its function in pyruvate kinase isoform M2 (PKM2) formation, thus restraining the PKM2/NF-κB pathway and the expression of inflammatory factors. In addition, local injection of the lincRNA-EPS overexpression lentivirus significantly alleviated inflammation, cartilage degradation, and subchondral bone loss in TMJOA mice. Overall, lincRNA-EPS regulated the inflammatory process of condylar chondrocytes by binding to SRSF3 and showed translational application potential in the treatment of TMJOA.
Collapse
Affiliation(s)
- W Wu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - A Hu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Xu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - J Su
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
6
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Juan Z, Xing-tong M, Xu Z, Chang-yi L. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis. J Dent Sci 2023; 18:959-971. [PMID: 37404608 PMCID: PMC10316511 DOI: 10.1016/j.jds.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 07/06/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a progressive degenerative disease of the temporomandibular joint (TMJ). The unclear etiology and mechanisms of TMJ OA bring great difficulties to early diagnosis and effective treatment, causing enormous burdens to patients' life and social economics. In this narrative review, we summarized the main pathological changes of TMJ OA, including inflammatory responses, degeneration of extracellular matrix (ECM), abnormal cell biological behaviors (apoptosis, autophagy, and differentiation) in TMJ tissue, and aberrant angiogenesis. All pathological features are closely linked to each other, forming a vicious cycle in the process of TMJ OA, which results in prolonged disease duration and makes it difficult to cure. Various molecules and signaling pathways are involved in TMJ OA pathogenesis, including nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), extracellular regulated protein kinases (ERKs) and transforming growth factor (TGF)-β signaling pathways et al. One molecule or pathway can contribute to several pathological changes, and the crosstalk between different molecules and pathways can further lead to a complicated condition TMJ OA. TMJ OA has miscellaneous etiology, complex clinical status, depressed treatment results, and poor prognosis. Therefore, novel in-vivo and in-vitro models, novel medicine, materials, and approaches for therapeutic procedures might be helpful for further investigation of TMJ OA. Furthermore, the role of genetic factors in TMJ OA needs to be elucidated to establish more reasonable and effective clinical strategies for diagnosing and treating TMJ OA.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Mu Xing-tong
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Zhang Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
- Institute of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Li Chang-yi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
8
|
Elgohary S, El Tayebi HM. Inflammasomes in breast cancer: the ignition spark of progression and resistance? Expert Rev Mol Med 2023; 25:e22. [PMID: 37337426 DOI: 10.1017/erm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Inflammation and immune evasion are major key players in breast cancer (BC) progression. Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the paradigm shift in BC treatments, patients still suffer from resistance, recurrence and serious immune-related adverse events. These obstacles require unravelling of the hidden molecular contributors for such therapy failure hence yielding therapeutics that are at least as efficient yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses danger signals (danger-associated molecular patterns) from damagedRdying cells or pathogen-associated molecular patterns found in microbes, leading to secretion of the active pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been shown throughout numerous studies that inflammasome pathway enhanced invasion, metastasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregulated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour volume and lessened angiogenesis in BC. This review sheds the light on the molecular pathways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights novel strategies in treatment and prevention of BC.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
9
|
Chen B, Ning K, Sun ML, Zhang XA. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal 2023; 21:67. [PMID: 37013568 PMCID: PMC10071628 DOI: 10.1186/s12964-023-01094-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial chronic disease primarily characterized by the degeneration of articular cartilage. Currently, there is a lack of effective treatments for OA other than surgery. The exploration of the mechanisms of occurrence is important in exploring other new and effective treatments for OA. The current evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a vital role in cytogenesis and is involved in OA progression. The terms "JAK2", "STAT3", and "Osteoarthritis"were used in a comprehensive literature search in PubMed to further investigate the relationship between the JAK2/STAT3 signaling pathway and OA. This review focuses on the role and mechanism of JAK2/STAT3 signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation. In addition, this review summarizes recent evidence of therapeutic approaches to treat OA by targeting the JAK2/STAT3 pathway to accelerate the translation of evidence into the progression of strategies for OA treatment. Video abstract.
Collapse
Affiliation(s)
- Bo Chen
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
10
|
Jiang Y, Zhang L, Tian H. MicroRNA-149 improves osteoarthritis via repression of VCAM-1 and inactivation of PI3K/AKT pathway. Exp Gerontol 2023; 174:112103. [PMID: 36716981 DOI: 10.1016/j.exger.2023.112103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are key regulators in osteoarthritis (OA). While the role of miR-149 in OA has not been fully understood yet. This study investigated the mechanism in which miR-149 inhibited vascular cell adhesion molecule 1 (VCAM-1) via depressing PI3K/AKT pathway, thereby alleviating OA. METHODS A mouse OA model was constructed. The mice were injected with miR-149, VCAM-1- PI3K/AKT pathway-related sequences to figure their roles in OA. Inflammation and apoptosis were detected in the cartilage tissues of mice. MiR-149 and VCAM-1expression were detected. RESULTS Decreased miR-149 and enhanced VCAM-1 existed in cartilage tissues of patients with OA. Elevated miR-149 or suppressed VCAM-1 limited inflammation and apoptosis in cartilage tissues of mice with OA, which was related to PI3K/AKT pathway inactivation. CONCLUSION Our study provides evidence that up-regulated miR-149 alleviates OA via inhibition of VCAM-1 and PI3K/AKT pathway, which is helpful for OA treatment.
Collapse
Affiliation(s)
- Yongqin Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Lei Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Huiyu Tian
- Department of Physical Diagnosis, The Second Hospital of Heilongjiang Province, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
11
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
12
|
Balasundaram T, Roy Chowdhury SK, Chattopadhyay PK, Desai AP, Kamalpathey K, Menon RP. Validity of IL-6 and Arthrocentesis in the Cause and Management of Internal Derangement of TMJ. J Maxillofac Oral Surg 2022; 21:1209-1217. [PMID: 36896078 PMCID: PMC9989061 DOI: 10.1007/s12663-021-01533-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose The aim of this clinical study was to evaluate the level of Interleukine-6 (IL-6), pre and post arthrocentesis to validate it as a biomarker in the Internal Derangement (ID) of TMJ. Material and Methods This study included 30 patients (20 females and 10 males) of Temporo-Mandibular Dysfunction (TMD) with Disc displacement without reduction (DDwoR) Wilkes stage III, who were refractory to conservative management. Arthrocentesis was performed as a therapeutic modality. Synovial fluid aspirates were obtained prior to arthrocentesis and post arthrocentesis with 300 ml of Ringer Lactate solution into the superior joint compartment for the assessment of level of IL-6. The clinical parameters used for correlating the level of IL-6 were degree of pain (VAS I), chewing ability (VAS II), Maximal Mouth Opening (MMO) in both pre and post op phase with the follow-up period of 01 day, 01 week, 01 month, 03 month and 06 month and the results were compared. ELISA was performed to analyze the levels of IL-6 in the aspirates. The clinical parameters and the level of IL-6 were recorded and analyzed statistically. Results The study showed ID of TMJ (Wilkes stage III) s are more prevalent in females especially in the fourth decades of life with the mean age of 38.4 years. The post operative assessment in terms of pain, maximum mouth opening, lateral movements of the mandible and the levels of IL-6 were found to be statistically significant with a P value <0.01. Conclusion This study validates the role of IL-6 as a definitive biomarker for the pathogenesis of ID of TMJ Wilkes stage III and arthrocentesis proved to be a minimally invasive therapeutic modality for its management.
Collapse
Affiliation(s)
- T. Balasundaram
- Department of Oral and Maxillofacial Surgery, Military Dental Centre, Jabalpur, Madhya Pradesh India
| | - S. K. Roy Chowdhury
- Department of Oral and Maxillofacial Surgery, Command Military Dental Centre, Chandigarh, India
| | - P. K. Chattopadhyay
- Department of Oral and Maxillofacial Surgery, Military Dental Centre, Bangalore, India
| | - Ajay P. Desai
- Department of Oral and Maxillofacial Surgery, Military Dental Centre, Shillong, India
| | - K. Kamalpathey
- Department of Oral and Maxillofacial Surgery, Army Dental Centre (Research and Referral), Delhi Cantt, New Delhi 110010 India
| | - Rahul P. Menon
- Department of Oral and Maxillofacial Surgery, Army Dental Centre (Research and Referral), Delhi Cantt, New Delhi 110010 India
| |
Collapse
|
13
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
14
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
15
|
Transcriptomes in peripheral blood of young females with temporomandibular joint osteoarthritis. Sci Rep 2021; 11:8872. [PMID: 33893371 PMCID: PMC8065155 DOI: 10.1038/s41598-021-88275-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate immune-related pathophysiology of the temporomandibular joint (TMJ) osteoarthritis (OA) in young females by analyzing transcriptional profiles of peripheral blood mononuclear cells. The RNA-sequencing (RNA-seq) was conducted on 24 young females with TMJ OA (mean age 19.3 ± 3.1 years) (RNAOA) and 11 age and sex matched healthy controls (mean age 20.5 ± 3.7 years) (CON). RNA-seq datasets were analyzed to identify genes, pathways, and regulatory networks of those which were involved in the development of TMJ OA. RNA-seq data analysis revealed 41 differentially expressed genes (DEGs) between RNAOA and CON. A total of 16 gene ontology (GO) terms including three molecular and 13 biological terms were annotated via the GO function of molecular function and biological process. Through ingenuity pathway analysis (IPA), 21 annotated categories of diseases and functions were identified. There were six hub genes which showed significant results in both GO enrichment analysis and IPA, namely HLA-C, HLA-F, CXCL8, IL11RA, IL13RA1, and FCGR3B. The young females with TMJ OA showed alterations of the genes related to immune function in the blood and some of changes may reflect inflammation, autoimmunity, and abnormal T cell functions.
Collapse
|
16
|
Zongfei J, Rongyi C, Xiaomeng C, Lili M, Lingying M, Xiufang K, Xiaomin D, Zhuojun Z, Huiyong C, Ying S, Lindi J. In vitro IL-6/IL-6R Trans-Signaling in Fibroblasts Releases Cytokines That May Be Linked to the Pathogenesis of IgG4-Related Disease. Front Immunol 2020; 11:1272. [PMID: 32733444 PMCID: PMC7360847 DOI: 10.3389/fimmu.2020.01272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The remarkable mechanisms of storiform fibrosis and the formation of high levels of IgG4 with a pathogenic germinal center (GC) in the inflammatory tissue of IgG4-RD remains unknown and may be responsible for the unsatisfactory therapeutic effect on IgG4-related diseases when using conventional therapy. Objectives: To investigate the mechanisms of interleukin 6 (IL-6) inducing fibroblasts to produce cytokines for pathogenic GC formation in the development of IgG4-related disease (IgG4-RD). Methods: The clinical data and laboratory examinations of 56 patients with IgG4-RD were collected. IL-6 and IL-6R expression in the serum and tissues of patients with IgG4-RD and healthy controls were detected by ELISA, immunohistochemistry, and immunofluorescence. Human aorta adventitial fibroblasts (AAFs) were cultured and stimulated with IL-6/IL-6 receptor (IL-6R). The effect of IL-6/IL-6R on AAFs was determined by Luminex assays. Results: The serum IL-6 and IL-6R levels were elevated in active IgG4-RD patients and IL-6 was positively correlated with the disease activity (e.g., erythrocyte sedimentation rate [ESR], C-reactive protein [CRP], and IgG4-RD responder index). IL-6 and IL-6R expression in the tissue lesions of IgG4-related retroperitoneal fibrosis and IgG4-related sialadenitis patients were also significantly higher than that in the normal tissues. In addition, there is a relative abundance of myofibroblasts as well as IgG4+ plasma cells in the tissues of IgG4-related retroperitoneal fibrosis. α-SMA and B cell differentiation cytokines (i.e., B cell activating factor), and α-SMA and T follicular helper (Tfh) cell differentiation cytokines (e.g., IL-7, IL-12, and IL-23) were co-expressed in the local lesions. In vitro, IL-6/IL-6R significantly promoted the production of B cell activating factor, IL-7, IL-12, and IL-23 in AAFs in a dose-dependent manner. This effect was partially blocked by JAK1, JAK2, STAT3, and Akt inhibitors, respectively. Conclusions:In vitro IL-6/IL-6R trans-signaling in fibroblasts releases Tfh and B cell differentiation factors partially via the JAK2/STAT3, JAK1/STAT3, and JAK2/Akt pathways, which may be linked to the pathogenesis of IgG4-RD. This indicated that IL-6 and fibroblasts may be responsible for GC formation and fibrosis in the development of IgG4-RD. Blocking IL-6 with JAK1/2 inhibitors or inhibiting fibroblast proliferation might be beneficial for IgG4-RD treatment.
Collapse
Affiliation(s)
- Ji Zongfei
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Chen Rongyi
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Cui Xiaomeng
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Ma Lili
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Ma Lingying
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Kong Xiufang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Dai Xiaomin
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Zhang Zhuojun
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Chen Huiyong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Sun Ying
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Jiang Lindi
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-Based Medicine Center, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Zwiri A, Al-Hatamleh MAI, W. Ahmad WMA, Ahmed Asif J, Khoo SP, Husein A, Ab-Ghani Z, Kassim NK. Biomarkers for Temporomandibular Disorders: Current Status and Future Directions. Diagnostics (Basel) 2020; 10:E303. [PMID: 32429070 PMCID: PMC7277983 DOI: 10.3390/diagnostics10050303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous studies have been conducted in the previous years with an objective to determine the ideal biomarker or set of biomarkers in temporomandibular disorders (TMDs). It was recorded that tumour necrosis factor (TNF), interleukin 8 (IL-8), IL-6, and IL-1 were the most common biomarkers of TMDs. As of recently, although the research on TMDs biomarkers still aims to find more diagnostic agents, no recent study employs the biomarker as a targeting point of pharmacotherapy to suppress the inflammatory responses. This article represents an explicit review on the biomarkers of TMDs that have been discovered so far and provides possible future directions towards further research on these biomarkers. The potential implementation of the interactions of TNF with its receptor 2 (TNFR2) in the inflammatory process has been interpreted, and thus, this review presents a new hypothesis towards suppression of the inflammatory response using TNFR2-agonist. Subsequently, this hypothesis could be explored as a potential pain elimination approach in patients with TMDs.
Collapse
Affiliation(s)
- Abdalwhab Zwiri
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Wan Muhamad Amir W. Ahmad
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
| | - Jawaad Ahmed Asif
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Suan Phaik Khoo
- Department of Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia;
| | - Adam Husein
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zuryati Ab-Ghani
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Karyatee Kassim
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
18
|
Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity's Involvement and Herbal Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2037484. [PMID: 31781260 PMCID: PMC6874989 DOI: 10.1155/2019/2037484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is considered a major cause of disability around the globe. This handicapping disease causes important cartilage and bone alteration that is associated with serious pains and loss of joint function. Despite its frequent association with obesity, the aetiology of OA is not fully understood. In this review, the different aspects of OA and its correlation with obesity were analysed. Through examining different mechanisms by which obesity may trigger and/or exacerbate OA, we point out some relevant signalling pathways that may evolve as candidates for pharmacological drug development. As such, we also suggest a review of different herbal medicines (HMs) and their main compounds, which specifically interfere with the identified pathways. We have shown that obesity's involvement in OA is not only limited to the mechanical weight exerted on the joints (mechanical hypothesis), but also induces an inflammatory state by different mechanisms, including increased leptin expression, compromised gut mucosa, and/or gut microbiota disruption. The main signalling pathways involved in OA inflammation, which are associated with obesity, are protein tyrosine phosphatase 1B (PTP1B) and TLR4 or DAP12. Moreover, we also underline the contamination of plant extracts with LPS as an important factor to consider when studying HM's effects on articular cells. By summarizing recent publications, this review aims at highlighting newly established aspects of obesity involvement in OA other than the mechanical one.
Collapse
|
19
|
Leptin enhances cytokine/chemokine production by normal lung fibroblasts by binding to leptin receptor. Allergol Int 2019; 68S:S3-S8. [PMID: 31029506 DOI: 10.1016/j.alit.2019.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Obesity is a known risk and exacerbation factor for bronchial asthma. Leptin is an adipokine secreted by adipocytes and enhances energy consumption. Earlier studies have shown that leptin also activates inflammatory cells and structural cells, including airway epithelial cells, thereby exacerbating inflammation. However, little is known about leptin's effect on normal human lung fibroblasts (NHLFs), which are deeply involved in airway remodeling in asthma. This study aimed to elucidate the direct effect of leptin on NHLFs. METHODS NHLFs were co-cultured with leptin, and production of cytokines/chemokines was analyzed with real-time PCR and cytometric bead arrays (CBA). Expression of alpha smooth muscle actin (α-SMA) in the lysate of NHLFs stimulated with leptin was assessed by western blotting. Expression of leptin receptor (Ob-R) was analyzed by real-time PCR and flow cytometry. NHLFs were transfected with Ob-R small interference ribonucleic acid (siRNA) by electroporation and used for experiments. RESULTS Leptin enhanced production of CCL11/Eotaxin, monocyte chemoattractant protein-1 (CCL2/MCP-1), CXCL8/IL-8, interferon gamma-induced protein 10 (CXCL10/IP-10) and IL-6 by NHLFs at both the protein and messenger ribonucleic acid (mRNA) levels. Leptin also slightly, but significantly, elevated expression of α-SMA. We found robust Ob-R expression on cell surfaces, and transfection with Ob-R siRNA suppressed the enhanced production of CCL11/Eotaxin, CXCL10/IP-10 and IL-6 by leptin, although not completely. CONCLUSIONS These findings indicate that leptin may contribute to worsening of asthma in obese patients by enhancing production of inflammatory mediators by binding to Ob-R and accelerating myofibroblast differentiation.
Collapse
|
20
|
Zhu N, Hou J, Ma G, Liu J. Network Pharmacology Identifies the Mechanisms of Action of Shaoyao Gancao Decoction in the Treatment of Osteoarthritis. Med Sci Monit 2019; 25:6051-6073. [PMID: 31409761 PMCID: PMC6705180 DOI: 10.12659/msm.915821] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) affects the health and wellbeing of the elderly. Shaoyao Gancao decoction (SGD) is used in traditional Chinese medicine (TCM) for the treatment of OA and has two active components, shaoyao (SY) and gancao (GC). This study aimed to undertake a network pharmacology analysis of the mechanism of the effects of SGD in OA. MATERIAL AND METHODS The active compounds and candidates of SGD were obtained from the Traditional Chinese Medicine (TCM) Databases@Taiwan, the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the STITCH database, the ChEMBL database, and PubChem. The network pharmacology approach involved network construction, target prediction, and module analysis. Significant signaling pathways of the cluster networks for SGD and OA were identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS Twenty-three bioactive compounds were identified, corresponding to 226 targets for SGD. Also, 187 genes were closely associated with OA, of which 161 overlapped with the targets of SGD and were considered to be therapeutically relevant. Functional enrichment analysis suggested that SGD exerted its pharmacological effects in OA by modulating multiple pathways, including cell cycle, cell apoptosis, drug metabolism, inflammation, and immune modulation. CONCLUSIONS A novel approach was developed to systematically identify the mechanisms of the TCM, SGD in OA using network pharmacology analysis.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Second Department of Spinal Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China (mainland)
| | - Jingyi Hou
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China (mainland)
| | - Guiyun Ma
- Second Department of Spinal Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China (mainland)
| | - Jinxin Liu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China (mainland)
| |
Collapse
|