1
|
Wan Q, Ren Q, Qiao S, Lyu A, He X, Li F. Therapeutic potential of flavonoids from traditional Chinese medicine in pancreatic cancer treatment. Front Nutr 2024; 11:1477140. [PMID: 39650709 PMCID: PMC11620852 DOI: 10.3389/fnut.2024.1477140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive malignancy with rising mortality rates globally. Its diagnosis is often challenging due to its asymptomatic nature in the early stages. Consequently, most patients receive a poor prognosis, with low survival rates within 5 years, as the disease is typically detected at an advanced stage, complicating effective treatment. Flavonoids, especially those derived from traditional Chinese herbal medicines, have attracted considerable attention for their potent anti-PC properties. This review highlights the therapeutic potential of these bioactive compounds, which modulate key biological pathways, making them promising candidates for PC intervention. Their mechanisms of action include the regulation of autophagy, apoptosis, cell growth, epithelial-mesenchymal transition, and oxidative stress, as well as enhancing chemotherapeutic sensitivity, exerting antiangiogenic effects, and potentially boosting immunomodulatory responses. The demonstrated benefits of these natural compounds in cancer management have spurred extensive academic interest. Beyond their role as anti-cancer agents, flavonoids may provide both preventive and therapeutic advantages for PC, resonating with the core principles of traditional Chinese medicine for disease prevention and holistic treatment.
Collapse
Affiliation(s)
- Qi Wan
- Acupuncture Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuangying Qiao
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lyu
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xingwei He
- Acupuncture Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fangfei Li
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
2
|
Zhang Z, Yung KKL, Ko JKS. Therapeutic Intervention in Cancer by Isoliquiritigenin from Licorice: A Natural Antioxidant and Redox Regulator. Antioxidants (Basel) 2022; 11:1349. [PMID: 35883840 PMCID: PMC9311861 DOI: 10.3390/antiox11071349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress could lead to a variety of body dysfunctions, including neurodegeneration and cancer, which are closely associated with intracellular signal transducers such as reactive oxygen species (ROS). It has been suggested that ROS is the upstream regulator of autophagy, and that it provides a negative feedback regulation to remove oxidative damage. Defects in the ROS-autophagic redox homeostasis could lead to the increased production of ROS and the accumulation of damaged organelles that in turn promote metabolic reprogramming and induce tumorigenesis. One significant characteristic of pancreatic cancer is the reprogramming of cellular energy metabolism, which facilitates the rapid growth, invasiveness, and the survival of cancer cells. Thus, the rectification of metabolic dysfunction is essential in therapeutic cancer targeting. Isoliquiritigenin (ISL) is a chalcone obtained from the plant Glycyrrhiza glabra, which is a powdered root licorice that has been consumed for centuries in different regions of the world. ISL is known to be a natural antioxidant that possesses diversified functions, including redox regulation in cells. This review contains discussions on the herbal source, biological properties, and anticancer potential of ISL. This is the first time that the anticancer activities of ISL in pancreatic cancer has been elucidated, with a coverage of the involvement of antioxidation, metabolic redox regulation, and autophagy in pancreatic cancer development. Furthermore, some remarks on related compounds of the isoflavonoid biosynthetic pathway of ISL will also be discussed.
Collapse
Affiliation(s)
- Zhu Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Golden Meditech Centre for Neuroregeneration Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Golden Meditech Centre for Neuroregeneration Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Joshua Ka-Shun Ko
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
3
|
Luo ML, Huang W, Zhu HP, Peng C, Zhao Q, Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed Pharmacother 2022; 149:112827. [PMID: 35316753 DOI: 10.1016/j.biopha.2022.112827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a leading cause of death worldwide, and cancer development is often associated with disturbances in the autophagy process. Autophagy is a catabolic process involved in many physiological processes, crucial for cell growth and survival. It is an intracellular lysosomal/vacuolar degradation system. In this system, inner cytoplasmic cell membrane is degraded by lysosomal hydrolases, and the products are released back into the cytoplasm. Indole alkaloids are natural products extensively found in nature and have been proven to possess various pharmacological activities. In recent years, pharmacological studies have demonstrated another potential of indole alkaloids, autophagy regulation. The regulation may contribute to the efficacy of indole alkaloids in preventing and treating cancer. This review summarizes the current understanding of indole alkaloids' effect on tumor cells and autophagy. Then, we focus on mechanisms by which indole alkaloids can target the autophagy process associated with cancer, including the PI3K/Akt/mTOR signaling pathway, MAPK signaling pathway, ROS signaling pathway, Beclin-1, and so on. Literature has been surveyed primarily from 2009 to Nov. 2021, and some semisynthetic or fully synthetic indole derivatives are also discussed.
Collapse
Affiliation(s)
- Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Yin Q, Chen H, Ma RH, Zhang YY, Liu MM, Thakur K, Zhang JG, Wei ZJ. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress. Food Funct 2021; 12:5301-5316. [PMID: 34013944 DOI: 10.1039/d1fo00348h] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ginsenoside CK (GCK), as a metabolite of ginsenoside Rb1, has been studied for its anti-cancer activity. However, its in-depth anti-cancer mechanism on cervical cancer (CC) HeLa cells has not been fully elucidated. This study found that GCK inhibited the proliferation of CC HeLa cells and caused alteration in cell morphology with an IC50 of 45.95 μM. At the same time, GCK treatment blocked the cell cycle in the G0/G1 phase, elevated the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (Δψm), contributed to Ca2+ leakage, inhibited HeLa cell metastasis, and stimulated the key markers related to apoptosis, mitochondrial and endoplasmic reticulum pathways. GCK altered the regulation of the Caspase family, Bak/Bcl-xl and down-regulated the endoplasmic reticulum pathways (PERK and IRE1α). Starting from flow cytometry and the protein level, we found that autophagy inhibitors inhibited autophagy while promoting apoptosis, and apoptosis inhibitors reduced the rate of apoptosis while promoting autophagy, which proved that GCK can be used as a suitable novel natural product for CC treatment.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Hua Chen
- School of Biology, Food and Environment, Hefei University, Hefei, People's Republic of China.
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Miao-Miao Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
5
|
Zhao Q, Peng C, Zheng C, He XH, Huang W, Han B. Recent Advances in Characterizing Natural Products that Regulate Autophagy. Anticancer Agents Med Chem 2020; 19:2177-2196. [PMID: 31749434 DOI: 10.2174/1871520619666191015104458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, an intricate response to nutrient deprivation, pathogen infection, Endoplasmic Reticulum (ER)-stress and drugs, is crucial for the homeostatic maintenance in living cells. This highly regulated, multistep process has been involved in several diseases including cardiovascular and neurodegenerative diseases, especially in cancer. It can function as either a promoter or a suppressor in cancer, which underlines the potential utility as a therapeutic target. In recent years, increasing evidence has suggested that many natural products could modulate autophagy through diverse signaling pathways, either inducing or inhibiting. In this review, we briefly introduce autophagy and systematically describe several classes of natural products that implicated autophagy modulation. These compounds are of great interest for their potential activity against many types of cancer, such as ovarian, breast, cervical, pancreatic, and so on, hoping to provide valuable information for the development of cancer treatments based on autophagy.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
6
|
Brown CN, Atwood DJ, Pokhrel D, Ravichandran K, Holditch SJ, Saxena S, Miyazaki M, Nemenoff R, Weiser-Evans MCM, Ljubanovic DG, Joy MS, Edelstein CL. The effect of MEK1/2 inhibitors on cisplatin-induced acute kidney injury (AKI) and cancer growth in mice. Cell Signal 2020; 71:109605. [PMID: 32194168 DOI: 10.1016/j.cellsig.2020.109605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
In a clinically-relevant model of 4 week, low-dose cisplatin-induced AKI, mice were injected subcutaneously with non small cell lung cancer (NSCLC) cells that harbor an activating Kirsten rat sarcoma viral oncogene homolog (KRAS)G12V mutation. Phospho extracellular signal-regulated kinase1/2 (pERK1/2) expression in kidney and tumors was decreased by the MEK1/2 inhibitors, U0126 and trametinib, that potently inhibit pERK1/2. U0126 resulted in a significant improvement in kidney function, acute tubular necrosis (ATN) and tubular cell apoptosis in mice with AKI. Genes that were significantly decreased by U0126 were heat shock protein 1, cyclin-dependent kinase 4 (CDK4) and stratifin (14-3-3σ). U0126 resulted in a significant decrease in tumor weight and volume and significantly increased the chemotherapeutic effect of cisplatin. Trametinib, a MEK1/2 inhibitor that is FDA-approved for the treatment of cancer, did not result in functional protection against AKI or worse AKI, but dramatically decreased tumor growth more than cisplatin. Smaller tumors in cisplatin or MEK1/2 inhibitor-treated mice were not related to changes in microtubule-associated proteins 1A/1B light chain 3B (LC3-II), p62, cleaved caspase-3, granzyme B, or programmed death-ligand 1 (PD-L1). In summary, despite ERK inhibition by both U0126 and trametinib, only U0126 protected against AKI suggesting that the protection against AKI by U0126 was due to an off-target effect independent of ERK inhibition. The effect of U0126 to decrease AKI may be mediated by inhibition of heat shock protein 1, CDK4 or stratifin (14-3-3σ). Trametinib was more effective than cisplatin in decreasing tumor growth, but unlike cisplatin, trametinib did not cause AKI.
Collapse
Affiliation(s)
- Carolyn N Brown
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Daniel J Atwood
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Deepak Pokhrel
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Kameswaran Ravichandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara J Holditch
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Sanskriti Saxena
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Raphael Nemenoff
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Mary C M Weiser-Evans
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA
| | | | - Melanie S Joy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Colorado at Denver, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, CO, USA.
| |
Collapse
|
7
|
Zhao L, Chen X, Feng Y, Wang G, Nawaz I, Hu L, Liu P. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy. Cancer Med 2019; 8:7762-7773. [PMID: 31663688 PMCID: PMC6912042 DOI: 10.1002/cam4.2659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
COX7A1 is a subunit of cytochrome c oxidase, and plays an important role in the super‐assembly that integrates peripherally into multi‐unit heteromeric complexes in the mitochondrial respiratory chain. In recent years, some researchers have identified that COX7A1 is implicated in human cancer cell metabolism and therapy. In this study, we mainly explored the effect of COX7A1 on the cell viability of lung cancer cells. COX7A1 overexpression was induced by vector transfection in NCI‐H838 cells. Cell proliferation, colony formation and cell apoptosis were evaluated in different groups. In addition, autophagy was analyzed by detecting the expression level of p62 and LC3, as well as the tandem mRFP‐GFP‐LC3 reporter assay respectively. Our results indicated that the overexpression of COX7A1 suppressed cell proliferation and colony formation ability, and promoted cell apoptosis in human non‐small cell lung cancer cells. Besides, the overexpression of COX7A1 blocked autophagic flux and resulted in the accumulation of autophagosome via downregulation of PGC‐1α and upregulation of NOX2. Further analysis showed that the effect of COX7A1 overexpression on cell viability was partly dependent of the inhibition of autophagy. Herein, we identified that COX7A1 holds a key position in regulating the development and progression of lung cancer by affecting autophagy. Although the crosstalk among COX7A1, PGC‐1α and NOX2 needs further investigation, our study provides a novel insight into the therapeutic action of COX7A1 against human non‐small cell lung cancer.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Anesthesiology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xin Chen
- Department of Laboratory Medicine, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, China
| | - Yetong Feng
- Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Guangsuo Wang
- Department of Thoracic Surgery, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, China
| | - Imran Nawaz
- Department of Thoracic Surgery, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, China.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lifu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pengfei Liu
- Department of Anesthesiology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Ravichandran K, Holditch S, Brown CN, Wang Q, Ozkok A, Weiser-Evans MC, Nemenoff R, Miyazaki M, Thiessen-Philbrook H, Parikh CR, Ljubanovic D, Edelstein CL. IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. Am J Physiol Renal Physiol 2018; 314:F356-F366. [PMID: 29070568 PMCID: PMC5899219 DOI: 10.1152/ajprenal.00040.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
The effect of IL-33 deficiency on acute kidney injury (AKI) and cancer growth in a 4-wk model of cisplatin-induced AKI in mice with cancer was determined. Mice were injected subcutaneously with murine lung cancer cells. Ten days later, cisplatin (10 mg·kg-¹·wk-¹) was administered weekly for 4 wk. The increase in kidney IL-33 preceded the AKI and tubular injury, suggesting that IL-33 may play a causative role. However, the increase in serum creatinine, blood urea nitrogen, serum neutrophil gelatinase-associated lipoprotein, acute tubular necrosis, and apoptosis scores in the kidney in cisplatin-induced AKI was the same in wild-type and IL-33-deficient mice. There was an increase in kidney expression of pro-inflammatory cytokines CXCL1 and TNF-α, known mediators of cisplatin-induced AKI, in IL-33-deficient mice. Surprisingly, tumor weight, tumor volume, and tumor growth were significantly decreased in IL-33-deficient mice, and the effect of cisplatin on tumors was enhanced in IL-33-deficient mice. As serum IL-33 was increased in cisplatin-induced AKI in mice, it was determined whether serum IL-33 is an early biomarker of AKI in patients undergoing cardiac surgery. Immediate postoperative serum IL-33 concentrations were higher in matched AKI cases compared with non-AKI controls. In conclusion, even though the cancer grows slower in IL-33-deficient mice, the data that IL-33 deficiency does not protect against AKI in a clinically relevant model suggest that IL-33 inhibition may not be useful to attenuate AKI in patients with cancer. However, serum IL-33 may serve as a biomarker of AKI.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Sara Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Qian Wang
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Abdullah Ozkok
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Mary C Weiser-Evans
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Raphael Nemenoff
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Heather Thiessen-Philbrook
- Program of Applied Translational Research, Department of Medicine, Yale University , New Haven, Connecticut
| | - Chirag R Parikh
- Program of Applied Translational Research, Department of Medicine, Yale University , New Haven, Connecticut
| | - Danica Ljubanovic
- University of Zagreb School of Medicine and Dubrava University Hospital , Zagreb , Croatia
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| |
Collapse
|
9
|
CD4 T cell knockout does not protect against kidney injury and worsens cancer. J Mol Med (Berl) 2015; 94:443-55. [PMID: 26620676 DOI: 10.1007/s00109-015-1366-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Most previous studies of cisplatin-induced acute kidney injury (AKI) have been in models of acute, high-dose cisplatin administration that leads to mortality in non-tumor-bearing mice. The aim of the study was to determine whether CD4 T cell knockout protects against AKI and cancer in a clinically relevant model of low-dose cisplatin-induced AKI in mice with cancer. Kidney function, serum neutrophil gelatinase-associated lipocalin (NGAL), acute tubular necrosis (ATN), and tubular apoptosis score were the same in wild-type and CD4 -/- mice with AKI. The lack of protection against AKI in CD4 -/- mice was associated with an increase in extracellular signal-regulated kinase (ERK), p38, CXCL1, and TNF-α, mediators of AKI and fibrosis, in both cisplatin-treated CD4 -/- mice and wild-type mice. The lack of protection was independent of the presence of cancer or not. Tumor size was double, and cisplatin had an impaired therapeutic effect on the tumors in CD4 -/- vs. wild-type mice. Mice depleted of CD4 T cells using the GK1.5 antibody were not protected against AKI and had larger tumors and lesser response to cisplatin. In summary, in a clinically relevant model of cisplatin-induced AKI in mice with cancer, (1) CD4 -/- mice were not protected against AKI; (2) ERK, p38, CXCL1, and TNF-α, known mediators of AKI, and interstitial fibrosis were increased in CD4 -/- kidneys; and (3) CD4 -/- mice had faster tumor growth and an impaired therapeutic effect of cisplatin on the tumors. The data warns against the use of CD4 T cell inhibition to attenuate cisplatin-induced AKI in patients with cancer. KEY MESSAGE A clinically relevant low-dose cisplatin model of AKI in mice with cancer was used. CD4 -/- mice were not functionally or histologically protected against AKI. CD4 -/- mice had faster tumor growth. CD4 -/- mice had an impaired therapeutic effect of cisplatin on the tumors. Mice depleted of CD4 T cells were not protected against AKI and had larger tumors.
Collapse
|
10
|
Ruan Y, Hu K, Chen H. Autophagy inhibition enhances isorhamnetin‑induced mitochondria‑dependent apoptosis in non‑small cell lung cancer cells. Mol Med Rep 2015; 12:5796-806. [PMID: 26238746 PMCID: PMC4581743 DOI: 10.3892/mmr.2015.4148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022] Open
Abstract
Isorhamnetin (ISO) is a flavonoid from plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. To date, the anti-tumor effects of ISO and the underlying mechanisms have not been elucidated in lung cancer cells. The present study investigated the inhibitory effects of ISO on the growth of human lung cancer A549 cells. Treatment of the lung cancer cells with ISO significantly suppressed cell proliferation and colony formation. ISO treatment also resulted in a significant increase in apoptotic cell death of A549 cells in a time- and dose-dependent manner. Further investigation showed that the apoptosis proceeded via the mitochondria-dependent pathway as indicated by alteration of the mitochondrial membrane potential, the release of cytochrome C and caspase activation. Of note, treatment with ISO also induced the formation of autophagosomes and light chain 3-II protein in A549 cells. Furthermore, co-treatment with autophagy inhibitors 3-methyladenine and hydroxychloroquine significantly inhibited the ISO-induced autophagy and enhanced the ISO-induced apoptotic cell death in vitro as well as in vivo. Thus, the results of the present study suggested that ISO is a potential anti-lung cancer agent. In addition, the results indicated that the inhibition of autophagy may be a useful strategy for enhancing the chemotherapeutic effect of ISO on lung cancer cells.
Collapse
Affiliation(s)
- Yushu Ruan
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongbo Chen
- The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Shenzhen Graduate School of Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
11
|
Gong J, Muñoz AR, Chan D, Ghosh R, Kumar AP. STAT3 down regulates LC3 to inhibit autophagy and pancreatic cancer cell growth. Oncotarget 2015; 5:2529-41. [PMID: 24796733 PMCID: PMC4058024 DOI: 10.18632/oncotarget.1810] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dismal 5-year survival (<5%) for pancreatic cancer (PanCA) underscores the need for developing effective therapeutic options. Recent studies from our laboratory have shown that Nexrutine® (Nx), a bark extract from Phellodendron amurense exhibits excellent anticancer activity in human pancreatic cancer cells through inhibition of inflammatory signaling via STAT3/NFκB/Cox-2. Given the apparent high oxidative stress and autophagic activity in pancreatic tumors, we investigated the potential of Nx to modulate autophagy, reactive oxygen species (ROS), and their crosstalk. Our results show that Nx inhibits autophagy and decreases ROS generation. Pharmacological inhibition of autophagy led to decreased ROS generation and proliferation with no significant effect on apoptosis. Further, using combination index analysis we also found that combination of late-stage autophagy inhibitor with Nx exhibited a moderate synergistic to additive effect. Additionally, genetic or pharmacological inactivation of STAT3 reduced LC3-II levels and expression indicating a possible role for STAT3 in transcriptional regulation of autophagy. Since both inflammatory and oxidative stress signaling activate STAT3, our data implicates that STAT3 plays a vital role in the regulation of autophagy through its contributions to the positive feedback loop between ROS and autophagy. Overall, our findings reveal an important role for STAT3/LC3/ROS in Nx-mediated anti-pancreatic cancer effects.
Collapse
Affiliation(s)
- Jingjing Gong
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX
| | | | | | | | - Addanki P Kumar
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
12
|
Fischer TD, Wang JH, Vlada A, Kim JS, Behrns KE. Role of autophagy in differential sensitivity of hepatocarcinoma cells to sorafenib. World J Hepatol 2014; 6:752-758. [PMID: 25349646 PMCID: PMC4209420 DOI: 10.4254/wjh.v6.i10.752] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of sorafenib (SFN) in autophagy of hepatocellular carcinoma (HCC). We evaluated how SFN affects autophagy signaling pathway in human HCC cell lines.
METHODS: Two different human HCC cell lines, Hep3B and Huh7, were subjected to different concentrations of SFN. Cell viability and onset of apoptosis were determined with colorimetric assay and immunoblotting analysis, respectively. The changes in autophagy-related proteins, including LC3, ULK1, AMPK, and LKB, were determined with immunoblotting analysis in the presence or absence of SFN. To assess autophagic dynamics, autophagic flux was measured with chloroquine, a lysosomal inhibitor. The autophagic responsiveness between different HCC cell lines was compared under the autophagy enhancing conditions.
RESULTS: Hep3B cells were significantly more resistant to SFN than Huh7 cells. Immunoblotting analysis revealed a marked increase in SFN-mediated autophagy flux in Huh7 cells, which was, however, absent in Hep3B cells. While both starvation and rapamycin enhanced autophagy in Huh7 cells, only rapamycin increased autophagy in Hep3B cells. Immunoblotting analysis of autophagy initiation proteins showed that SFN substantially increased phosphorylation of AMPK and consequently autophagy in Huh7, but not in Hep3B cells.
CONCLUSION: The autophagic responsiveness to SFN is distinct between Hep3B and Huh7 cells. Resistance of Hep3B cells to SFN may be associated with altered autophagy signaling pathways.
Collapse
|
13
|
Tacar O, Indumathy S, Tan ML, Baindur-Hudson S, Friedhuber AM, Dass CR. Cardiomyocyte apoptosis vs autophagy with prolonged doxorubicin treatment: comparison with osteosarcoma cells. J Pharm Pharmacol 2014; 67:231-43. [DOI: 10.1111/jphp.12324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/27/2014] [Indexed: 12/13/2022]
Abstract
Abstract
Objective
Doxorubicin (Dox) is a frontline chemotherapeutic against osteosarcoma (OS) that is plagued by side effects, particularly in the heart. The specific objective of this article is to investigate whether low-dose Dox treatment had pro-autophagic effects in cardiomyocytes as well as osteosarcoma cells.
Methods
This study characterises apoptotic (Bax) and autophagic (Beclin-1) biomarker levels in human OS and cardiomyocyte cell lines as well as in various tissues when mice are exposed to low (1 mg/kg, thrice weekly) and high (3 mg/kg thrice weekly) dose Dox for a month.
Key findings
There was a decrease in Bax and increase in Beclin-1 in cardiac tissue in the high-dose group. Dox decreased Beclin-1 in the skin and liver, with no clear indication in the stomach, small intestine and testis. At low Dox doses of 10 and 100 nm in cardiomyocytes and OS cells, there is a pro-apoptotic effect, with a quicker response in the 100-nm condition, and a slower but steady increase of a pro-apoptotic response at the lower 10-nm dose. However, electron microscopy images revealed changes to human OS cells that resembled autophagy. Human prostate, breast and colorectal cells treated with 10-nm Dox showed ∼ 40% reduction in cell viability after 24 h.
Conclusion
In culture, cells of both cardiomyocytes and OS revealed a predominant pro-apoptotic response at the expense of autophagy, although both seemed to be occurring in vivo.
Collapse
Affiliation(s)
- Oktay Tacar
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Sivanjah Indumathy
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Mei Lin Tan
- Department of Orthopaedics, St. Vincent's Health, Melbourne, Australia
| | | | - Anna M Friedhuber
- Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Crispin R Dass
- Curtin Biosciences Research Precinct, Perth, Australia
- School of Pharmacy, Curtin University, Perth, Australia
| |
Collapse
|
14
|
Li J, Cui G, Sun L, Wang SJ, Tian S, Guan Z, Fan WS, Yan ZF, Yang YZ, You YQ, Fu XY, Li LA, Huang K, Li YL, Meng YG. ARHI overexpression induces epithelial ovarian cancer cell apoptosis and excessive autophagy. Int J Gynecol Cancer 2014; 24:437-43. [PMID: 24476894 DOI: 10.1097/igc.0000000000000065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE ARHI is a maternally imprinted tumor suppressor gene that is responsible for initiating programmed cell death and inhibiting cancer cell growth. However, the influence of ARHI on epithelial ovarian cancer cell death and the underlying mechanisms behind how ARHI regulates cancer cells still require further studies. METHODS Epithelial ovarian cancer cells TOV112D and ES-2 were used in this in vitro study. Cell proliferation, apoptosis, and autophagy activities were compared in TOV112D and ES-2 cells transfected with ARHI vectors or control vectors. Bcl-2 siRNA was transfected into TOV112D cells to investigate the roles of Bcl-2 played in regulating apoptosis and autophagy. RESULTS ARHI expression was reduced in TOV112D and ES-2 cells compared with normal epithelial ovarian cells (NOE095 and HOSEpiC). Overexpressed ARHI inhibited cancer cell proliferation, whereas induced forced cell apoptosis and excessive formation of autophagosomes inhibited promoted cell death. Furthermore, we found that Bcl-2 expression moderately declined in response to ARHI overexpressing in ES-2 and TOV112D cells; meanwhile, more apoptotic cells and higher LC3 level presented after silence of Bcl-2 in TOV112D cells. Reduced Bcl-2-Beclin 1 complex were observed in ARHI overexpressing cells. Moreover, modulation of ARHI to Bcl-2 expression could be ascribed partially to the activation of PI3k/AKT pathway. The addition of LY294002 enabled to suppress Bcl-2 expression and cell proliferation. CONCLUSIONS The silence of ARHI expression in vitro seems to accelerate the malignant transformation of healthy ovarian cells by restraining apoptosis and autophagy. The overexpressed ARHI in TOV112D cancer cells suppresses the activation of PI3K/AKT and reduces the expression of Bcl-2, leading to enhanced cell apoptosis and autophagic cancer cell death.
Collapse
Affiliation(s)
- Jie Li
- Departments of *Gynecology and Obstetrics, †Orthopedics, and ‡Pathology, General Hospital of PLA, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hain AUP, Bosch J. Autophagy in Plasmodium, a multifunctional pathway? Comput Struct Biotechnol J 2013; 8:e201308002. [PMID: 24688742 PMCID: PMC3962217 DOI: 10.5936/csbj.201308002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
Autophagy is a catabolic process that normally utilizes the lysosome. The far-reaching implications of this system in disease are being increasingly understood. Studying autophagy is complicated by its role in cell survival and programmed cell death and the involvement of the canonical marker of autophagy, Atg8/LC3, in numerous non-autophagic roles. The malaria parasite, Plasmodium, has conserved certain aspects of the autophagic machinery but for what purpose has long remained a mystery. Major advances have recently been gained and suggest a role for Atg8 in apicoplast maintenance, degradation of heme inside the food vacuole, and possibly trafficking of proteins or organelles outside the parasite membrane. Autophagy may also participate in programmed cell death under drug treatment or as a selective tool to limit parasite load. We review the current findings and discuss discrepancies in the field of autophagy in the Plasmodium parasite.
Collapse
Affiliation(s)
- Adelaide U P Hain
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, United States
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, United States
| |
Collapse
|
16
|
Chu YL, Raghu R, Lu KH, Liu CT, Lin SH, Lai YS, Cheng WC, Lin SH, Sheen LY. Autophagy therapeutic potential of garlic in human cancer therapy. J Tradit Complement Med 2013; 3:159-62. [PMID: 24716172 PMCID: PMC3924985 DOI: 10.4103/2225-4110.114895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer is one of the deadliest diseases against humans. To tackle this menace, humans have developed several high-technology therapies, such as chemotherapy, tomotherapy, targeted therapy, and antibody therapy. However, all these therapies have their own adverse side effects. Therefore, recent years have seen increased attention being given to the natural food for complementary therapy, which have less side effects. Garlic (Dà Suàn; Allium sativum), is one of most powerful food used in many of the civilizations for both culinary and medicinal purpose. In general, these foods induce cancer cell death by apoptosis, autophagy, or necrosis. Studies have discussed how natural food factors regulate cell survival or death by autophagy in cancer cells. From many literature reviews, garlic could not only induce apoptosis but also autophagy in cancer cells. Autophagy, which is called type-II programmed cell death, provides new strategy in cancer therapy. In conclusion, we wish that garlic could be the pioneer food of complementary therapy in clinical cancer treatment and increase the life quality of cancer patients.
Collapse
Affiliation(s)
- Yung-Lin Chu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Rajasekaran Raghu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chun-Ting Liu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shu-Hsi Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Syuan Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Cheng Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|