1
|
Placidi M, Casoli G, Vergara T, Bianchi A, Cocciolone D, Zaccardi S, Macchiarelli G, Palmerini MG, Tatone C, Bevilacqua A, Di Emidio G. D-chiro-inositol effectively counteracts endometriosis in a mouse model. Mol Med 2025; 31:134. [PMID: 40211112 PMCID: PMC11987403 DOI: 10.1186/s10020-025-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Endometriosis, a common condition affecting 5-10% of women of reproductive age, is the growth of endometrial-like tissue outside the uterus, leading to pain and infertility. Current treatments, such as surgery and hormonal therapy, offer limited long-term benefits. This study investigated the potential of D-chiro inositol (DCI), a natural compound that influences ovarian steroidogenesis, to treat endometriosis and compared its efficacy with a progestin drug such as Dienogest (DG). METHODS We established a non-surgical mouse model of endometriosis in CD1 mice. Uterine horns were removed from donor mice, cut into fragments and inoculated in recipient mice by intraperitoneal injection. Endometriosis progression was assessed at 15, 21 and 28 days after transplantation, with the 28-day window being the most effective. The mice were then randomly assigned to four experimental groups, which received for 28 days: water (EMS); DCI 0.4 mg/die (DCI); DCI 0.2 mg/die and Dienogest 0.33 ng/die (DCI + DG); DG 0.67 ng/die (DG). At the end of the treatments, endometriotic lesions, ovaries and circulating estradiol levels were analyzed. RESULTS The results showed that treatment with DCI, both alone and in combination with DG, significantly reduced the number, size and vascularization of endometriotic lesions compared to the EMS control group. Histological analysis confirmed a decrease in endometriotic foci across all treatment groups, with the most pronounced effects in the DCI group. To investigate the underlying molecular mechanisms, we found that DCI led to a significant reduction in the expression of Sirt1 and an increase in E-Cadherin, indicating a reduction in EMT transition relevant for lesion development. In addition, DCI decreased cell proliferation and,blood vessel formation, as evaluated by PCNA and CD34, respectively. Futhermore, in the ovary, DCI treatment downregulated the expression of aromatase (Cyp19a1), the enzyme critical for estrogen biosynthesis, and increased the number of primordial to antral follicles, suggesting a beneficial effect on ovarian folliculogenesis. CONCLUSIONS By modulating proliferation, EMT transition and aromatase activity, DCI emerges as a promising compound for endometriosis treatment.
Collapse
Affiliation(s)
- Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Giovanni Casoli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Teresa Vergara
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Andrea Bianchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Domenica Cocciolone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Silvia Zaccardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy.
| | - Arturo Bevilacqua
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University of Rome, 00185, Rome, Italy.
- Research Center in Neurobiology Daniel Bovet (CRiN), Systems Biology Group Lab, Rome, Italy.
- The Experts Group on Inositol in Basic and Clinical Research and on PCOS (EGOI-PCOS), 00156, Rome, Italy.
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via G. Petrini, 67100, L'Aquila, Italy
- The Experts Group on Inositol in Basic and Clinical Research and on PCOS (EGOI-PCOS), 00156, Rome, Italy
| |
Collapse
|
2
|
Miranda‐Molina A, Alvarez L, Antunez‐Mojica M, Velasco‐Bejarano B. Reviewing Glycosyl-Inositols: Natural Occurrence, Biological Roles, and Synthetic Techniques. Chembiochem 2025; 26:e202400823. [PMID: 40025679 PMCID: PMC11907402 DOI: 10.1002/cbic.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/14/2025] [Indexed: 03/04/2025]
Abstract
Glycosyl-inositols are molecules consisting of one or more α- or β-D-glycosyl residues bonded primarily to inositol or methyl-inositol. These derivatives are found in plants, yeast, bacteria, and parasites, and exhibit diverse biological properties. The limited availability of glycosyl inositols from natural sources has led to significant interest in chemical and enzymatic synthesis techniques due to their potential applications in various fields. This review provides a comprehensive overview of inositols, methyl-inositols, and primarily glycosyl inositols, focusing on their classification, natural occurrence, biological roles, and potential applications across different disciplines. Inositols, particularly myo-inositol and its derivatives are widely distributed in plants and play essential roles in biochemical processes and metabolic functions in different organs and tissues. Glycosyl inositols, including glycosylphosphatidylinositols, glycosyl inositol phosphorylceramides, phosphatidylinositol mannosides, monoglycosyl and diglycosyl derivatives, are discussed, emphasizing their structural diversity and biological functions. Methods for their chemical and enzymatic synthesis are also reviewed, highlighting recent advances and challenges in the field. Overall, this comprehensive review underscores the significance of glycosyl inositols as versatile molecules with diverse biological functions and promising applications in scientific research and industry.
Collapse
Affiliation(s)
- Alfonso Miranda‐Molina
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaUniversidad Nacional Autónoma de México.Av. Universidad 2001, Col. Chamilpa, C. P.62210Cuernavaca, MorelosMéxico
| | - Laura Alvarez
- LANEM-Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAvenida Universidad 1001Cuernavaca Morelos62209Mexico
- cCentro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAvenida Universidad 1001Cuernavaca Morelos62209México
| | - Mayra Antunez‐Mojica
- CONAHCYT-Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAvenida Universidad 1001Cuernavaca Morelos62209México
| | - Benjamín Velasco‐Bejarano
- Sección de Química OrgánicaDepartamento de Ciencias QuímicasFacultad de EstudiosSuperiores Cuautitlán-UNAMAv. 1 de Mayo S/N, Col. Sta. Ma. Las TorresCuautitlán Izcalli54740Estado de México C.P.
| |
Collapse
|
3
|
Coutinho TE, Martins-Gomes C, Machado-Carvalho L, Nunes FM, Silva AM. Anti-Inflammatory, Anti-Hyperglycemic, and Anti-Aging Activities of Aqueous and Methanolic Fractions Obtained from Cucurbita ficifolia Bouché Fruit Pulp and Peel Extracts. Molecules 2025; 30:557. [PMID: 39942670 PMCID: PMC11819910 DOI: 10.3390/molecules30030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The Cucurbita genus comprises various species that are globally consumed and that are commonly used for their nutritional value but also for medicinal applications. Within the Cucurbita genus can be found Cucurbita ficifolia Bouché, a species that is understudied regarding its potential value for the food industry, as a functional food, and for the pharmaceutical industry, as a source of nutraceuticals. Therefore, in this study we investigated the phytochemical composition and bioactivities of aqueous (AF) and methanolic (MF) fractions of C. ficifolia pulp and peel hydroethanolic (HE) extracts. HPLC-DAD-MSn and HPAEC-PAD analyses of extracts' fractions revealed a low content of polyphenols and a significant content of sugars. Through in vitro inhibition assays of the enzymes alpha-amylase, acetylcholinesterase (AChE), and elastase, all fractions showed, respectively, antidiabetic, neuroprotective, and anti-aging activities. The safety profile and anti-tumoral activities were evaluated in various cell models (Caco-2, HaCaT, HepG2, and RAW 264.7), and results showed that the fractions obtained from pulp extract induce no/low cytotoxicity, while the methanolic fraction of peel induced cytotoxicity in all cell lines. At non-cytotoxic concentrations, aqueous and methanolic fractions of both extracts significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, revealing anti-inflammatory activity. Flow cytometry analysis showed that both aqueous fractions increased basal levels of glutathione (GSH) in Caco-2 cells, while not inducing oxidative stress, revealing potential as antioxidant dietary agents. However, the MF of peel HE extract induced oxidative stress in Caco-2 cells, as it increased reactive oxygen species (ROS) and lipid peroxidation. AF fraction of peel extract induced cell cycle arrest in the G0/G1 phase, while the other fractions induced cell cycle arrest in the S phase. In conclusion, Cucurbita ficifolia fruit presents potential as a functional food but also as a potential source of nutraceuticals, and peel waste products can be valorized by pharmaceutical and cosmeceutical industries as sources of bioactive molecules.
Collapse
Affiliation(s)
- Tiago E. Coutinho
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (T.E.C.); (C.M.-G.); (L.M.-C.)
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (T.E.C.); (C.M.-G.); (L.M.-C.)
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Liliana Machado-Carvalho
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (T.E.C.); (C.M.-G.); (L.M.-C.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (T.E.C.); (C.M.-G.); (L.M.-C.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Méndez-Martínez M, Zamilpa A, Zavala-Sánchez MA, Almanza-Pérez JC, Jiménez-Ferrer JE, Herrera-Ruiz M, González-Cortázar M, Cervantes-Torres J, Fragoso G, Rosas-Salgado G. Anti-adipogenic effect of Malva parviflora on 3T3-L1 adipocytes. PLoS One 2024; 19:e0306903. [PMID: 39116155 PMCID: PMC11309439 DOI: 10.1371/journal.pone.0306903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Malva parviflora has shown anti-inflammatory, antihypertensive, antihyperlipidemic, and hypoglycemic effects. This study is aimed to evaluate the anti-adipogenic effect of M. parviflora on 3T3-L1 adipocytes. Fibroblast differentiation was induced either in the absence or presence of M. parviflora fractions (F3, F4, F7, F12, F13, F17, F18 and F19) for 4 days; F17 and 18 were the most effective fractions in reducing intracellular lipid accumulation (by 25.6% and 23.1%, respectively). EC50 of F17 and F18 (14 μg/mL and 17 μg/mL, respectively) were used to evaluate their anti adipogenic effect. After 10 days of inducing differentiation in the absence or presence of the extracts at the EC50 of F17 and F18, lipid accumulation, the concentration of interleukin 6 (IL-6) were measured in the culture medium; the presence of PPAR-γ, AKT, and p-AKT was also determined. In differentiated adipocytes (C2), F17 maintained intracellular lipid concentration at levels comparable to metformin, while decreasing PPAR-γ and increasing p-AKT presence; it also prevented IL-6 expression. F17 consists of alanine, valine, phenylalanine, and proline. On the other hand, F18 reduced intracellular lipid concentrations, prevented the increase of PPAR-γ and p-AKT, and maintained IL-6 expression at similar levels as metformin. F18 is mainly constituted by alanine, valine, proline, and sucrose. In conclusion, M. parviflora fractions (F17 and F18) control the process of adipogenesis, lipogenesis, and cellular dysfunction.
Collapse
Affiliation(s)
- Marisol Méndez-Martínez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City, Mexico
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| | - Miguel A. Zavala-Sánchez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Julio C. Almanza-Pérez
- Laboratorio de Farmacología, División de C.B.S., Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - J. Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| | - Manasés González-Cortázar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| | - Jaquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Arefhosseini S, Roshanravan N, Asghari S, Tutunchi H, Ebrahimi-Mameghani M. Expression of inflammatory genes, WBC-derived inflammatory biomarkers and liver function indices: Effects of myo-inositol supplementation in obese patients with NAFLD. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
6
|
Moreno-Quiroga G, Alba-Jiménez J, Aquino-Bolaños EN, Chávez-Servia JL. Phenolic compounds and antioxidant activity in Cucurbita ficifolia fruits, an underrated fruit. Front Nutr 2023; 9:1029826. [PMID: 36712535 PMCID: PMC9875808 DOI: 10.3389/fnut.2022.1029826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
The fruits and seeds of Cucurbita ficifolia Bouché are sources of minerals, vitamins, and functional compounds with nutraceutical and preventive potential against cardiovascular diseases and diseases derived from eating disorders. C. ficifolia is native from Mesoamerica and is currently cultivated in temperate zones from Mexico to South America and Asia. This study evaluated the fruit mesocarps of C. ficifolia for physicochemical parameters, antioxidant activity, and phenolic compound contents in a collection of farmers' landraces. Germplasm is cultivated by traditional farmers in the temperate zones of two municipalities from Oaxaca, Mexico. The results show that the content of soluble solid contents (SSC), pH, total sugars (TS), and flavonoids are influenced by the fruit geographical origin (municipalities) and implicitly by their agroecological cultivation conditions (Huamelúlpam: SSC = 6.22 °Brix, pH = 5.44, TS = 0.52 mg G g-1, flavonoids = 1.24 mg CE g-1; Yanhuitlán: SSC = 6.69, pH = 5.33, TS = 0.55, flavonoids = 1.30). Among populations preserved by traditional farmers, significant differences, and wide variability were found for all parameters evaluated (Huamelúlpam: SSC = 4.9-7.3, pH = 5.5-5.8, TS = 0.4-0.7, protein = 5.8-11.4, polyphenols = 1.9-4.8, flavonoids = 1.0-1.5, DPPH = 4.3-10.6, and FRAP = 4.8-11.8; Yanhuitlán: SSC = 4.3-8.9, pH = 4.8-5.6, TS = 0.4-0.7, protein = 5.0-15.3, polyphenols = 1.9-4.9, flavonoids = 0.8-1.9, DPPH = 5.3-10.5, and FRAP = 4.5-12.6). Eight compounds were identified by UPLC-MS: L-phenylalanine, an amino acid that is regularly associated with proteins; vanillin, a phenolic aldehyde with its functional groups including aldehyde, hydroxyl, and ether; and six phenolic acids: 4-hydroxybenzoic acid, 4-hydroxyphenylacetic acid, vanillic acid, 4-coumaric acid, ferulic acid, and salicylic acid, all with potential health effects. The C. ficifolia fruit mesocarp has bioactive compounds with high antioxidant activity with the potential to both improve diet and to obtain other benefits against nontransmissible diseases derived from food and its associated risk factors.
Collapse
Affiliation(s)
- G. Moreno-Quiroga
- Centro de Investigación y Desarrollo en Alimentos de la Universidad Veracruzana, Xalapa, Mexico
| | - J.E. Alba-Jiménez
- CONACyT-Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Xalapa, Mexico
| | - E. N. Aquino-Bolaños
- Centro de Investigación y Desarrollo en Alimentos de la Universidad Veracruzana, Xalapa, Mexico
| | - J. L. Chávez-Servia
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, Mexico
| |
Collapse
|
7
|
Fermentation of the Cucurbita ficifolia Fruit Juice: Its Antioxidant Activity and Effects on the Glycemia. BEVERAGES 2022. [DOI: 10.3390/beverages8030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cucurbita ficifolia is an edible plant whose fruits have hypoglycemic, anti-inflammatory, and antioxidant activities. Fermentation might improve these properties. This research aims to perform and characterize its fermentation in native and induced conditions with Lactobacillus plantarum (Lp) and evaluate its antioxidant activity and effect on glycemia. Fresh juice from mature fruits was characterized. One portion of this juice was spontaneously left to ferment (native fermentation), and the other was inoculated with Lp (controlled fermentation). Fermentation was monitored each 8 h by 56 h to measure microbial growth, pH, acidity, sugars, soluble protein, polyphenols and flavonoids, antioxidant activity, and effects on glycemia. In native fermentation, the growth of total microorganisms increased up to 32 h, decreasing at the end of the process. In Lp fermentation, total microorganisms increased until 16 h to stay constant at the end, with a predominance of Lp. The pH and the sugars decreased in the two fermentations, while polyphenol and flavonoid increased. In spontaneous fermentation, these changes were lesser. Both fermentations, like fresh juice, preserve functional properties (antioxidant, alpha-glucosidase inhibition, and hypoglycemia). The fermentation of this juice with Lp may develop functional beverages, which is significant due to its consumption as an edible fruit with medicinal properties.
Collapse
|
8
|
Rosiles-Alanis W, Zamilpa A, García-Macedo R, Zavala-Sánchez MA, Hidalgo-Figueroa S, Mora-Ramiro B, Román-Ramos R, Estrada-Soto SE, Almanza-Perez JC. 4-Hydroxybenzoic Acid and β-Sitosterol from Cucurbita ficifolia Act as Insulin Secretagogues, Peroxisome Proliferator-Activated Receptor-Gamma Agonists, and Liver Glycogen Storage Promoters: In Vivo, In Vitro, and In Silico Studies. J Med Food 2022; 25:588-596. [PMID: 35708636 DOI: 10.1089/jmf.2021.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin secretion and GLUT4 expression are two critical events in glucose regulation. The receptors G-protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor-gamma (PPARγ) modulate these processes, and they represent potential therapeutic targets for new antidiabetic agent's design. Cucurbita ficifolia fruit is used in traditional medicine for diabetes control. Previous studies demonstrated several effects: a hypoglycemic effect mediated by an insulin secretagogue action, antihyperglycemic effect, and promoting liver glycogen storage. Anti-inflammatory and antioxidant effects were also reported. Moreover, some of its phytochemicals have been described, including d-chiro-inositol. However, to understand these effects integrally, other active principles should be investigated. The aim was to perform a chemical fractionation guided by bioassay to isolate and identify other compounds from C. ficifolia fruit that explain its hypoglycemic action as insulin secretagogue, its antihyperglycemic effect by PPARγ activation, and on liver glycogen storage. Three different preparations of C. ficifolia were tested in vivo. Ethyl acetate fraction derived from aqueous extract showed antihyperglycemic effect in an oral glucose tolerance test and was further fractioned. The insulin secretagogue action was tested in RINm5F cells. For the PPARγ activation, C2C12 myocytes were treated with the fractions, and GLUT4 mRNA expression was measured. Chemical fractionation resulted in the isolation and identification of β-sitosterol and 4-hydroxybenzoic acid (4-HBA), which increased insulin secretion, GLUT4, PPARγ, and adiponectin mRNA expression, in addition to an increase in glycogen storage. 4-HBA exhibited an antihyperglycemic effect, while β-sitosterol showed hypoglycemic effect, confirming the wide antidiabetic related results we found in our in vitro models. An in silico study revealed that 4-HBA and β-sitosterol have potential as dual agonists on PPARγ and GPR40 receptors. Both compounds should be considered in the development of new antidiabetic drug development.
Collapse
Affiliation(s)
- Wendoline Rosiles-Alanis
- Postgraduate degree programme in Experimental Biology, DCBS, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Alejandro Zamilpa
- Southern Biomedical Research Center (CIBIS), Mexican Social Security Institute, Xochitepec, Mexico
| | - Rebeca García-Macedo
- Medical Investigation Unit in Biochemistry, Specialty Hospital, XXI Century National Medical Center, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Miguel A Zavala-Sánchez
- Biological Systems Dept., DCBS, Autonomous Metropolitan University-Xochimilco, Mexico City, Mexico
| | - Sergio Hidalgo-Figueroa
- CONACyT, IPICYT/Consortium for Research, Innovation and Development for Arid Zones, San Luis Potosí, Mexico
| | - Beatriz Mora-Ramiro
- Health Science Dept., DCBS, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Rubén Román-Ramos
- Health Science Dept., DCBS, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | | | - Julio C Almanza-Perez
- Health Science Dept., DCBS, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
9
|
Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Jiménez-Estrada M. Selected Species of the Cucurbitaceae Family Used in Mexico for the Treatment of Diabetes Mellitus. Molecules 2022; 27:3440. [PMID: 35684376 PMCID: PMC9182361 DOI: 10.3390/molecules27113440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
In Mexico, Diabetes mellitus (DM) is a serious health problem, and although the current pharmacological treatments for DM such as insulin and oral hypoglycemics are available, the Mexican population continues to use medicinal plants in the treatment of DM. The antidiabetic properties of the plant species that belong to the Cucurbitaceae family has already been recognized worldwide. Since Mexico is one of the most important centers of diversity of Cucurbitaceae, the present work contributes to the review of the most used species of Cucurbitaceae in the treatment of DM in Mexico. The reviewed species (Cucurbita ficifolia, C. maxima, C. moschata, C. pepo, Ibervillea sonorae, Sechium edule, Citrullus lanatus, Cucumis melo, and C. sativus) revealed that the antidiabetic effects exerted are effective in a number of mechanisms involved in the complex pathogenesis of DM: hypoglycemic, antioxidant, anti-inflammatory, anti-obesity, protective effects on diverse organs and cells, as well as in the control of dyslipidemias; furthermore, the select species of the Cucurbitaceae family could also be essential components of diets for the control of DM in patients with the disease. Thus, the Cucurbitaceae species selected in the present work represent a source of antidiabetic agents that perhaps establish the bases for novel clinical treatments.
Collapse
Affiliation(s)
- Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de Mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| |
Collapse
|
10
|
Gambioli R, Montanino Oliva M, Nordio M, Chiefari A, Puliani G, Unfer V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021; 9:biomedicines9101378. [PMID: 34680494 PMCID: PMC8533370 DOI: 10.3390/biomedicines9101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
D-chiro-inositol (DCI) is a natural compound detectable in cell membranes, which is highly conserved as a biological signaling molecule. In mammals, its function is primarily characterized in the intracellular transduction cascade of insulin. In particular, insulin signal promotes the release of pivotal DCI-containing molecules. In fact, impaired release of DCI is a common feature of insulin-resistant tissues, and insulin-sensitizing pharmaceuticals induce higher concentrations of free DCI. Moreover, it also plays important roles in several other processes. DCI is involved in the regulation of steroidogenesis, due to its regulatory effects on steroidogenic enzymes, including 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, and aromatase. Such regulation of various enzymes indicates a mechanism by which the body regulates different processes via a single molecule, depending on its concentration. DCI also reduces the expression of integrin β3, which is an adhesion molecule involved in embryo implantation and cellular phenomena such as survival, stemness, and invasiveness. In addition, DCI seems to have important anti-inflammatory activities, like its 3-O-methyl-ether, called pinitol. In vitro evidence demonstrates that treatment with both compounds induces a reduction in pro-inflammatory factors—such as Nf-κB—and cytokines—such as TNF-α. DCI then plays important roles in several fundamental processes in physiology. Therefore, research on such molecule is of primary importance.
Collapse
Affiliation(s)
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- System Biology Group Lab, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Méndez-Flores OG, Ochoa-Díaz López H, Castro-Quezada I, Olivo-Vidal ZE, García-Miranda R, Rodríguez-Robles U, Irecta-Nájera CA, López-Ramírez G, Sánchez-Chino XM. The Milpa as A Supplier of Bioactive Compounds: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- OG Méndez-Flores
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - H Ochoa-Díaz López
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - I Castro-Quezada
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - ZE Olivo-Vidal
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - R García-Miranda
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
- Escuela De Lenguas-Campus III San Cristóbal, Universidad Autónoma De Chiapas, San Cristóbal De Las Casas, Chiapas, México
| | - U Rodríguez-Robles
- Departamento De Ecología Y Recursos Naturales. Centro Universitario De La Costa Sur. Universidad De Guadalajara, Autlán De Navarro, Jalisco, México
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| | - CA Irecta-Nájera
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - G López-Ramírez
- Departamento De Fisiología, Biofísica Y Neurociencias, Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad De México, México
| | - XM Sánchez-Chino
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| |
Collapse
|
12
|
Moya-Hernández A, Bosquez-Molina E, Verde-Calvo JR, Blancas-Flores G, Trejo-Aguilar GM. Hypoglycemic effect and bioactive compounds associated with the ripening stages of the Cucurbita ficifolia Bouché fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5171-5181. [PMID: 32530046 DOI: 10.1002/jsfa.10566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The fruit of Cucurbita ficifolia Bouché is known in Mexico as 'chilacayote'. The scientific interest that C. ficifolia Bouché has acquired is due to its important hypoglycemic effect. The present research aimed (i) to discover whether this hypoglycemic property is present at different stages of development of this fruit, and (ii) to characterize some bioactive compounds with antioxidant or anti-inflammatory properties. Ethylene production, respiration rate, and maturity indices were determined during fruit development. The chemical characterization of the aqueous extracts of each stage of maturity studied was determined and their hypoglycemic effects were bioassayed using groups of normal mice with diabetes induced by streptozotocin at a dose of 500 mg-1 kg-1 body weight. RESULTS Respiration rate and ethylene production showed a typical pattern for non-climacteric fruit and the quality parameters did not show significant changes. Phenolic compounds such as gallic acid and chlorogenic acid were found to have the highest concentration at 15 days of development. Extracts at 15 days showed a hypoglycemic effect that was 11% greater than that of glibenclamide in diabetized mice. CONCLUSION All stages of development of C. ficifolia fruit had a hypoglycemic effect; however, the aqueous extract from the fruit at 15 days of development showed a better effect than glibenclamide. This finding highlights the potential of this maturity stage, and shows that it is appropriate for inclusion in treatments of type 2 diabetes mellitus. The results also indicate that phenolic compounds are mainly responsible for this effect and not d-chiro-inositol as previously thought. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Araceli Moya-Hernández
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Elsa Bosquez-Molina
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - José Ramón Verde-Calvo
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Gerardo Blancas-Flores
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
13
|
Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol 2020; 137:111178. [PMID: 32035214 DOI: 10.1016/j.fct.2020.111178] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pseudocereals grains, edible seeds belonging to dicotyledonous plant species, are becoming a current trend in human diets as gluten-free (GF) grains with excellent nutritional and nutraceutical value. Pseudocereals are a good source of starch, fiber, proteins, minerals, vitamins, and phytochemicals such as saponins, polyphenols, phytosterols, phytosteroids, and betalains with potential health benefits. The present review aims to summarize the nutritional quality and phytochemical profile of the three main pseudocereal grains: quinoa, amaranth and buckwheat. In addition, current evidence about their health benefits in animal models and human studies is also provided in detail. Based on the accumulating research supporting the inclusion of pseudocereals grains in the diet of celiac persons, this review discusses the recent advances in their application for the development of new GF products. Future directions for a wider cultivation and commercial exploitation of these crops are also highlighted.
Collapse
|
14
|
Byrd DA, Judd SE, Flanders WD, Hartman TJ, Fedirko V, Bostick RM. Development and Validation of Novel Dietary and Lifestyle Inflammation Scores. J Nutr 2019; 149:2206-2218. [PMID: 31373368 PMCID: PMC6887697 DOI: 10.1093/jn/nxz165] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronically higher inflammation, which may partly result from diet and lifestyle, is implicated in risk for multiple chronic diseases. The dietary inflammatory index (DII) and empirical dietary inflammatory pattern (EDIP), developed to characterize dietary contributions to systemic inflammation, have several limitations. There are no scores to characterize contributions of lifestyle to inflammation. OBJECTIVES To reflect dietary/lifestyle contributions to inflammation, we developed novel, inflammation biomarker panel-weighted, dietary (DIS) and lifestyle (LIS) inflammation scores in a subset (n = 639) of the Reasons for Geographic and Racial Differences in Stroke Study (REGARDS) cohort. METHODS We selected a priori 19 food groups and 4 lifestyle characteristics to comprise the DIS and LIS, respectively. We calculated the components' weights based on their strengths of association with an inflammation biomarker score [comprising high-sensitivity C-reactive protein (hsCRP), IL-6, IL-8, and IL-10] using multivariable linear regression. The sums of the weighted components constitute the scores, such that higher scores reflect, on balance, more proinflammatory exposures. We calculated the DIS, LIS, DII, and EDIP with cross-sectional data from the remaining REGARDS cohort ( n = 14,210 with hsCRP measurements) and 2 other study populations with hsCRP and/or an 8-component inflammation biomarker panel, and investigated their associations with circulating inflammation biomarker concentrations using multivariable logistic regression. RESULTS In REGARDS, those in the highest relative to the lowest DIS, LIS, DII, and EDIP quintiles had statistically significant 1.66-, 4.29-, 1.56-, and 1.32-fold higher odds of a high hsCRP concentration (>3 mg/dL), respectively (all P-trend < 0.001). Those in the highest relative to the lowest joint DIS/LIS quintile had a statistically significant 7.26-fold higher odds of a high hsCRP concentration. Similar findings were noted in the other 2 validation populations. CONCLUSION Our results support that dietary and lifestyle exposures collectively contribute substantially to systemic inflammation, and support the use of our novel DIS and LIS.
Collapse
Affiliation(s)
- Doratha A Byrd
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Suzanne E Judd
- Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - W Dana Flanders
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Terryl J Hartman
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Veronika Fedirko
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Roberd M Bostick
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Marisol MM, Celeste TM, Laura MM, Fernando EG, José PC, Alejandro Z, Omar MC, Francisco AA, Julio César AP, Erika CN, Angélica SC, Gladis F, Enrique JF, Gabriela R. Effect of Cucumis sativus on Dysfunctional 3T3-L1 Adipocytes. Sci Rep 2019; 9:13372. [PMID: 31527805 PMCID: PMC6746747 DOI: 10.1038/s41598-019-49458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is caused by lipid accumulation in adipose tissues inducing adipocyte dysfunction, characterized by insulin resistance, increased lipolysis, oxidative stress, and inflammation, leading to increased levels of adipokines. Herein the capacity of the subfractions (SFs) SF1, SF2, and SF3 from the Cucumis sativus aqueous fraction and their combinations (M) to control adipocyte dysfunction in vitro, in 3T3-L1 adipocytes was studied. Adipocytes, previously treated with dexamethasone or IL-1 to induce dysfunction, were incubated with different concentrations of the subfractions for 24 h. 2-deoxyglucose consumption and glycerol release were evaluated, and a surface model was constructed to determine the most effective SF concentrations to improve both parameters. Effective SF combinations were assessed in their capacity to control metabolic, pro-oxidative, and pro-inflammatory conditions. SF1, SF2 (40 μg/ml each) and SF3 (20 μg/ml) improved 2-deoxyglucose consumption by 87%, 57%, and 87%, respectively. SF1 and SF2 (5 μg/ml each) and SF3 (40 μg/mL) increased glycerol secretion by 10.6%, 18.9%, and 11.8%, respectively. Among five combinations tested, only M4 (SF1 40 μg/ml:SF2 60 μg/ml:SF3 30 μg/ml) and M5 (SF1 40 μg/ml:SF2 60 μg/mL:SF3 10 μg/ml) controlled effectively the metabolic, pro-oxidative, and proinflammatory conditions studied. Glycine, asparagine, and arginine were the main components in these SFs.
Collapse
Affiliation(s)
- Méndez-Martínez Marisol
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62209, Mexico
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62350, Mexico
| | - Trejo-Moreno Celeste
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62209, Mexico
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62350, Mexico
| | - Maldonado-Mejía Laura
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62350, Mexico
| | | | - Pedraza-Chaverri José
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CP, 04510, Mexico
| | - Zamilpa Alejandro
- Laboratorio de Farmacología, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelo, CP, 62790s, Mexico
| | - Medina-Campos Omar
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CP, 04510, Mexico
| | - Alarcón-Aguilar Francisco
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana de Iztapalapa, CDMX, C.P, 09640, Mexico
| | - Almanza-Pérez Julio César
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana de Iztapalapa, CDMX, C.P, 09640, Mexico
| | - Contreras-Nuñez Erika
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana de Iztapalapa, CDMX, C.P, 09640, Mexico
| | - Santana-Calderón Angélica
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62209, Mexico
| | - Fragoso Gladis
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, Mexico
| | - Jiménez-Ferrer Enrique
- Laboratorio de Farmacología, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelo, CP, 62790s, Mexico.
| | - Rosas Gabriela
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, CP, 62209, Mexico.
| |
Collapse
|
16
|
Cheng F, Ge X, Gao C, Li Y, Wang M. The distribution of D-chiro-inositol in buckwheat and its antioxidative effect in HepG2. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wu W, Wang L, Qiu J, Li Z. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
18
|
Alshammari GM, Balakrishnan A. Pumpkin ( Cucurbita ficifolia Bouché) extract attenuate the adipogenesis in human mesenchymal stem cells by controlling adipogenic gene expression. Saudi J Biol Sci 2018; 26:744-751. [PMID: 31048999 PMCID: PMC6486525 DOI: 10.1016/j.sjbs.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 01/06/2023] Open
Abstract
Prevention and management of obesity through dietary modification is one of the top way to trim down its consequences. Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since food constituents play a major role in the cell differentiation and proliferation, we sought to determine if various extracts of Cucurbita ficifolia (C. ficifolia), could affect the adipogenic differentiation of hMSCs. Flow cytometry analysis with quantitative and qualitative Nile red, and quantitative PCR methods were employed to evaluate the C. ficifolia effect on hMSCs adipogenesis. Results revealed that, chloroform extract exhibits significant adipogenic inhibition than that of hexane and methanol extracts. Chloroform extract treated cells display the down-regulation of ADIPOQ, FABP4, PPARGC1A, CEBPB & LPL and up-regulation of ACACB & CEBPA genes. Further, various phytoconstituents present in the chloroform extract of C. ficifolia were analyzed though LC-MS and GC-MS. Our results indicates that chloroform extract of C. ficifolia might be used as a food supplement to control obesity and its related consequences.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Adipocytes and Metabolic Disorders Lab, Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Aristatile Balakrishnan
- Adipocytes and Metabolic Disorders Lab, Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Jessica GG, Mario GL, Alejandro Z, Cesar APJ, Ivan JVE, Ruben RR, Javier AAF. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:218-230. [PMID: 28480434 PMCID: PMC5412228 DOI: 10.21010/ajtcam.v14i3.24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: The aqueous extract of Cucurbita ficifolia (C. ficifolia) fruit has demonstrated hypoglycemic effect, which may be attributed to some components in the extract. However, the major secondary metabolites in this fruit have not yet been identified and little is known about its extra-pancreatic action, in particular, on liver carbohydrate metabolism. Therefore, in addition to the isolation and structural elucidation of the principal components in the aqueous extract of C. ficifolia, the aim of this study was to determine whether or not the hypoglycemic effect of the aqueous extract of Cucurbita ficifolia (C. ficifolia) fruit is due to accumulation of liver glycogen in diabetic mice. Materials and Methods: The aqueous extract from fruit of C. ficifolia was fractionated and its main secondary metabolites were purified and chemically characterized (NMR and GC-MS). Alloxan-induced diabetic mice received daily by gavage the aqueous extract (30 days). The liver glycogen content was quantified by spectroscopic method and by PAS stain; ALT and AST by spectrometric method; glycogen synthase, glycogen phosphorylase and GLUT2 by Western blot; the mRNA expression of GLUT2 and glucagon-receptor by RT-PCR; while serum insulin was quantified by ELISA method. A liver histological analysis was also performed by H&E stain. Results: Chemical fingerprint showed five majoritarian compounds in the aqueous extract of C. ficifolia: p-coumaric acid, p-hydroxybenzoic acid, salicin, stigmast-7,2,2-dien-3-ol and stigmast-7-en-3-ol. The histological analysis showed accumulation of liver glycogen. Also, increased glycogen synthase and decreased glycogen phosphorylase were observed. Interestingly, the histological architecture evidenced a liver-protective effect due the extract. Conclusion: Five compounds were identified in C. ficifolia aqueous extract. The hypoglycemic effect of this extract may be partially explained by liver glycogen accumulation. The bioactive compound responsible for the hypoglycemic effect of this extract will be elucidated in subsequent studies.
Collapse
Affiliation(s)
- Garcia Gonzalez Jessica
- Postgrad in Experimental Biology, Division of Health and Biological Sciences (DCBS), Metropolitan Autonomous University Campus Iztapalapa (UAMI), D.F. Mexico 09340, Mexico
| | - Garcia Lorenzana Mario
- Neurobiology Tissue Laboratory, Department of Reproduction Biology, DCBS, UAMI D.F. Mexico 09340, Mexico
| | - Zamilpa Alejandro
- Biomedical Research Center South (CIBIS), Mexican Institute of Social Security (IMSS) Xochitepec, Morelos 62790, Mexico
| | | | - Jasso Villagomez E Ivan
- Pharmacology Laboratory, Department of Health Sciences, DCBS, UAMI, D.F. Mexico 09340, Mexico
| | - Roman Ramos Ruben
- Pharmacology Laboratory, Department of Health Sciences, DCBS, UAMI, D.F. Mexico 09340, Mexico
| | | |
Collapse
|
20
|
Aristatile B, Alshammari GM. In vitro biocompatibility and proliferative effects of polar and non-polar extracts of cucurbita ficifolia on human mesenchymal stem cells. Biomed Pharmacother 2017; 89:215-220. [PMID: 28231542 DOI: 10.1016/j.biopha.2017.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
Cucurbita ficifolia (C. ficifolia) has been traditionally known for its medicinal properties as an antioxidant, anti-diabetic and anti-inflammatory agent. However, there has been an enduring attention towards the identification of unique method, to isolate the natural components for therapeutic applications. Our study focuses on different polar and non-polar solvents (methanol, hexane and chloroform) to extract the bioactive components from C. ficifolia (pumpkin) and to study the biocompatibility and cytotoxicity effects on human bone marrow-mesenchymal stem cells (hBM-MSCs). The extracts were screened for their effects on cytotoxicity, cell proliferation and cell cycle on the hBM-MSCs cell line. The assays demonstrated that the chloroform extract was highly biocompatible, with less cytotoxic effect, and enhanced the cell proliferation. The methanol extract did not exhibit significant cytotoxicity when compare to the control. Concordantly, the cell cycle analysis confirmed that chloroform extract enhances the proliferation at lower concentrations. On the other hand, hexane extract showed high level of cytotoxicity with apoptotic and necrotic changes in hBM-MSCs. Collectively, our data revealed that chloroform is a good candidate to extract the bioactive components from C. ficifolia. Furthermore, our results suggest that specific gravity and density of the solvent might play a crucial role in the extraction process, which warrants further investigations.
Collapse
Affiliation(s)
- Balakrishnan Aristatile
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
21
|
Fortis-Barrera Á, García-Macedo R, Almanza-Perez JC, Blancas-Flores G, Zamilpa-Alvarez A, Flores-Sáenz JL, Cruz M, Román-Ramos R, Alarcón-Aguilar FJ. Cucurbita ficifolia (Cucurbitaceae) modulates inflammatory cytokines and IFN-γ in obese mice. Can J Physiol Pharmacol 2017; 95:170-177. [PMID: 27918843 DOI: 10.1139/cjpp-2015-0475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
This study investigated the effect of aqueous extract of Cucurbita ficifolia Bouché on systemic chronic inflammation in an obesity model induced by monosodium glutamate (MSG) via modulating the expression of adipokines (TNF-α, IL-6, resistin, and adiponectin) and immune-regulatory cytokines (IFN-γ and IL-10). Cucurbita ficifolia extract was administered daily by gavage to lean and MSG-obese mice for 30 days. At the end of treatment, cytokine mRNA expression in adipose tissue was determined by real-time polymerase chain reaction (PCR), and the protein levels of these cytokines were also quantified by enzyme-linked immunosorbent assay (ELISA). Cucurbita ficifolia extract decreased body mass and inflammation in MSG-obese mice by reducing the expression of TNF-α and IL-6; these decreases were parallel to significant reductions in protein levels. The extract also increased protein levels of IL-10 in lean mice and IFN-γ in both lean and MSG-obese mice. In conclusion, C. ficifolia extract modulates systemic chronic inflammation in MSG-obese mice and could have a beneficial effect on the adaptive immune system in obesity.
Collapse
Affiliation(s)
- Á Fortis-Barrera
- a Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, 186 S. San Rafael Atlixco, Col. Vicentina, 09340, México, D.F
| | - R García-Macedo
- b Hospital of Specialties, CMNSXXI, Mexican Institute of Social Security (IMSS), 330 S. Cuauhtémoc, Col. Doctores, 06720, México, D.F
| | - J C Almanza-Perez
- a Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, 186 S. San Rafael Atlixco, Col. Vicentina, 09340, México, D.F
| | - G Blancas-Flores
- a Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, 186 S. San Rafael Atlixco, Col. Vicentina, 09340, México, D.F
| | - A Zamilpa-Alvarez
- c South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Argentina No. 1, Xochitepec, 62790, Morelos, México
| | - J L Flores-Sáenz
- a Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, 186 S. San Rafael Atlixco, Col. Vicentina, 09340, México, D.F
| | - M Cruz
- b Hospital of Specialties, CMNSXXI, Mexican Institute of Social Security (IMSS), 330 S. Cuauhtémoc, Col. Doctores, 06720, México, D.F
| | - R Román-Ramos
- a Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, 186 S. San Rafael Atlixco, Col. Vicentina, 09340, México, D.F
| | - F J Alarcón-Aguilar
- a Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, 186 S. San Rafael Atlixco, Col. Vicentina, 09340, México, D.F
| |
Collapse
|
22
|
Miranda-Perez ME, Ortega-Camarillo C, Del Carmen Escobar-Villanueva M, Blancas-Flores G, Alarcon-Aguilar FJ. Cucurbita ficifolia Bouché increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:159-166. [PMID: 27174079 DOI: 10.1016/j.jep.2016.04.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Cucurbita ficifolia Bouché(C. ficifolia) is a plant used in Mexican traditional medicine to control type 2 diabetes (T2D). The hypoglycemic effect of the fruit of C. ficifolia has been demonstrated in different experimental models and in T2D patients. It has been proposed that D-chiro-inositol (DCI) is the active compound of the fruit. Additionally, it has been reported that C. ficifolia increases the mRNA expression of insulin and Kir 6.2 (a component of the ATP-sensitive potassium (K(+)ATP) channel, which is activated by sulphonylurea) in RINm5F cells. However, it remains unclear whether C. ficifolia and DCI causes the secretion of insulin by increasing the concentration of intracellular calcium ([Ca(2+)]i) through K(+)ATP channel blockage or from the reservoir in the endoplasmic reticulum (ER). MATERIAL AND METHODS The aqueous extract of C. ficifolia was obtained and standardized with regard to its DCI content. RINm5F pancreatic β-cells were incubated with different concentrations (50, 100, 200 and 400μM) of DCI alone or C. ficifolia (9, 18, 36 and 72µg of extract/mL), and the [Ca(2+)]i of the cells was quantified. The cells were preloaded with the Ca(2+) fluorescent dye fluo4-acetoxymethyl ester (AM) and visualized by confocal microscopy. Insulin secretion was measured by an ELISA method. Subsequently, the effect of C. ficifolia on the K(+)ATP channel was evaluated. In this case, the blocker activator diazoxide was used to inhibit the C. ficifolia-induced calcium influx. In addition, the inositol 1,4,5-trisphosphate (IP3)-receptor-selective inhibitor 2-amino-thoxydiphenylborate (2-APB) was used to inhibit the influx of calcium from the ER that was induced by C. ficifolia. RESULTS It was found that DCI alone did not increase [Ca(2+)]i or insulin secretion. In contrast, treatment with C. ficifolia increased [Ca(2+)]i 10-fold compared with the control group. Insulin secretion increased by 46.9%. In the presence of diazoxide, C. ficifolia decreased [Ca(2+)]i by 50%, while insulin secretion increased by 36.4%. In contrast, in the presence of 2-APB, C. ficifolia increased [Ca(2+)]i 18-fold, while insulin secretion remained constant, indicating an additive effect. Therefore, C. ficifolia was not found to block the K(+)ATP channel. However, it did exert an effect by increasing [Ca(2+)]i from the ER, which may partly explain the insulin secretion observed following treatment with C. ficifolia. CONCLUSIONS The hypoglycemic properties of C. ficifolia can be explained in part by its effect as a secretagogue for insulin through an increase in [Ca(2+)]i from the calcium reservoir in the ER. Therefore, the mechanism of action of C. ficifolia is different to those of the currently used hypoglycemic drugs, such as sulfonylureas. These results support that C. ficifolia may be a potential natural resource for new agents to control T2D.
Collapse
Affiliation(s)
- Maria Elizabeth Miranda-Perez
- Division de Ciencia Biologicas y de la Salud (DCBS), Universidad Autonoma Metropolitana Unidad Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, Ciudad de Mexico, Mexico.
| | - Clara Ortega-Camarillo
- Unidad de Investigacion Medica en Bioquimica, HE, Centro Medico Nacional Siglo XXI. IMSS, Av. Cuauhtemoc 330, Col. Doctores, Del. Cuauhtemoc, Ciudad de Mexico, Mexico.
| | | | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, UAM-I, Avenida San Rafael Atlixco 186, Ciudad de Mexico, Mexico.
| | - Francisco Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, UAM-I, Avenida San Rafael Atlixco 186, Ciudad de Mexico, Mexico.
| |
Collapse
|
23
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
24
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|