1
|
Goldmann K, Spiliopoulou A, Iakovliev A, Plant D, Nair N, Cubuk C, McKeigue P, Barnes MR, Barton A, Pitzalis C, Lewis MJ. Expression quantitative trait loci analysis in rheumatoid arthritis identifies tissue specific variants associated with severity and outcome. Ann Rheum Dis 2024; 83:288-299. [PMID: 37979960 PMCID: PMC10894812 DOI: 10.1136/ard-2023-224540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE Genome-wide association studies have successfully identified more than 100 loci associated with susceptibility to rheumatoid arthritis (RA). However, our understanding of the functional effects of genetic variants in causing RA and their effects on disease severity and response to treatment remains limited. METHODS In this study, we conducted expression quantitative trait locus (eQTL) analysis to dissect the link between genetic variants and gene expression comparing the disease tissue against blood using RNA-Sequencing of synovial biopsies (n=85) and blood samples (n=51) from treatment-naïve patients with RA from the Pathobiology of Early Arthritis Cohort. RESULTS This identified 898 eQTL genes in synovium and genes loci in blood, with 232 genes in common to both synovium and blood, although notably many eQTL were tissue specific. Examining the HLA region, we uncovered a specific eQTL at HLA-DPB2 with the critical triad of single-nucleotide polymorphisms (SNPs) rs3128921 driving synovial HLA-DPB2 expression, and both rs3128921 and HLA-DPB2 gene expression correlating with clinical severity and increasing probability of the lympho-myeloid pathotype. CONCLUSIONS This analysis highlights the need to explore functional consequences of genetic associations in disease tissue. HLA-DPB2 SNP rs3128921 could potentially be used to stratify patients to more aggressive treatment immediately at diagnosis.
Collapse
Affiliation(s)
- Katriona Goldmann
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Andrii Iakovliev
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester Centre for Musculoskeletal Research, Manchester, UK
| | - Nisha Nair
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester Centre for Musculoskeletal Research, Manchester, UK
| | - Cankut Cubuk
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Paul McKeigue
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester Centre for Musculoskeletal Research, Manchester, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Cui X, Wang J, Fan C, Jiang H, Li W. Astragalosides inhibit proliferation of fibroblast-like synoviocytes in experimental arthritis by modulating LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis. Int J Rheum Dis 2023; 26:1547-1556. [PMID: 37317788 DOI: 10.1111/1756-185x.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIM Astragalus membranaceus (Fisch.) Bunge., the dried root of the plant A. membranaceus, is widely used in the treatment of rheumatoid arthritis (RA) in many Chinese herbal remedies. Astragalosides (AST) is the primary medicinal ingredient of A. membranaceus and has a therapeutic effect on RA, but the specific mechanism of this effect has yet to be elucidated. METHODS In this study, MTT and flow cytometry were used to determine the effects of AST on fibroblast-like synoviocyte (FLS) proliferation and cell cycle progression. Additionally, real-time quantitative polymerase chain reaction and Western blotting were used to determine the effects of AST on the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and on critical genes that are essential to the Wnt pathway. RESULTS The data showed that after the administration of AST, FLS proliferation and LncRNA S56464.1, β-catenin, C-myc, Cyclin D1, and p-GSK-3β(Ser9)/GSK-3β expression were significantly reduced, and miR-152 and SFRP4 expression was notably increased. CONCLUSION These results suggest that AST can inhibit FLS proliferation by modulating the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and that AST may be a potential therapeutic drug for RA.
Collapse
Affiliation(s)
- Xiaoya Cui
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui, China
| | - Weiping Li
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Parker J, Hockney S, Blaschuk OW, Pal D. Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia. Expert Rev Mol Med 2023; 25:e16. [PMID: 37132370 PMCID: PMC10407222 DOI: 10.1017/erm.2023.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
This review discusses current research on acute paediatric leukaemia, the leukaemic bone marrow (BM) microenvironment and recently discovered therapeutic opportunities to target leukaemia-niche interactions. The tumour microenvironment plays an integral role in conferring treatment resistance to leukaemia cells, this poses as a key clinical challenge that hinders management of this disease. Here we focus on the role of the cell adhesion molecule N-cadherin (CDH2) within the malignant BM microenvironment and associated signalling pathways that may bear promise as therapeutic targets. Additionally, we discuss microenvironment-driven treatment resistance and relapse, and elaborate the role of CDH2-mediated cancer cell protection from chemotherapy. Finally, we review emerging therapeutic approaches that directly target CDH2-mediated adhesive interactions between the BM cells and leukaemia cells.
Collapse
Affiliation(s)
- Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
4
|
Total Saponins of Radix Clematis Regulate Fibroblast-Like Synoviocyte Proliferation in Rheumatoid Arthritis via the LncRNA OIP5-AS1/MiR-410-3p/Wnt7b Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8393949. [PMID: 35668775 PMCID: PMC9166986 DOI: 10.1155/2022/8393949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Background Rheumatoid arthritis (RA) is the most common autoimmune disease and affects multiple joints. Previous studies have shown that total saponins of Radix clematidis (TSC) have a clear therapeutic effect on RA, but the specific mechanism has not yet been clarified. Literature screening and previous research suggest that the lncRNA OIP5-AS1/miR-410-3p/Wnt7b signaling pathway exerts a regulatory effect on the pathogenesis of RA. In this study, we examined whether the TSC treatment of RA affects the lncRNA OIP5-AS1/miR-410-3p/Wnt7b pathway. Materials and Methods Freund's complete adjuvant was used to create an adjuvant arthritis (AA) rat model with rat synovial cells being harvested and cultured. The experiment comprises a normal group, model group, TSC optimal-dose group, TSC optimal-dose group + lncRNA OIP5-AS1siRNA group, lncRNA OIP5-AS1 siRNA group, and lncRNA OIP5-AS1 siRNA + NC group. MMT was used to screen the optimal concentration of TSC. The level of lncRNA OIP5-AS1, miR-410-3p, Wnt7b, β-catenin, c-Myc, cyclin D1, GSK-3β, and SFRP4 mRNA were detected by real-time-qPCR, the expression of Wnt7b, β-catenin, c-Myc, cyclin D1, GSK-3β, and p-GSK-3β (Ser9) protein were detected by immunofluorescence and Western blot. Results We found that TSC inhibits the proliferation of RA FLS, TSC significantly reduced lncRNA OIP5-AS1, Wnt7b, β-catenin, c-Myc, cyclin D1, and p-GSK-3β/GSK-3β mRNA/protein expression, whereas the miR-410-3p and SFRP4 mRNA/protein expression levels were significantly upregulated. Our data suggest that TSC can inhibit the excessive proliferation of FLS to treat RA, the mechanism of which may be closely related to regulation of the lncRNA OIP5-AS1/miR-410-3p /Wnt7b signaling axis and the Wnt signaling pathway.
Collapse
|
5
|
Ji M, Ryu HJ, Baek HM, Shin DM, Hong JH. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp Mol Med 2022; 54:503-517. [PMID: 35414711 PMCID: PMC9076869 DOI: 10.1038/s12276-022-00756-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive fibroblast-like synoviocytes (FLSs) and pannus formation. Various therapeutic strategies have been developed against inflammatory cytokines in RA in recent decades. Based on the migratory features of FLSs, we examined whether modulation of the migratory module attenuates RA severity. In this study, inflamed synovial fluid-stimulated FLSs exhibited enhanced migration and migratory apparatus expression, and sodium bicarbonate cotransporter n1 (NBCn1) was identified in primary cultured RA-FLSs for the first time. The NBC inhibitor S0859 attenuated the migration of FLSs induced with synovial fluid from patients with RA or with TNF-α stimulation. Inhibition of NBCs with S0859 in a collagen-induced arthritis (CIA) mouse model reduced joint swelling and destruction without blood, hepatic, or renal toxicity. Primary FLSs isolated from the CIA-induced mouse model also showed reduced migration in the presence of S0859. Our results suggest that inflammatory mediators in synovial fluid, including TNF-α, recruit NBCn1 to the plasma membrane of FLSs to provide dynamic properties and that modulation of NBCn1 could be developed into a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdongdae-ro 774-gil, Nandong-gu, Incheon, South Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
6
|
Shen PC, Chang PC, Hsieh JL. Snail regulation in fibroblast-like synoviocytes by a histone deacetylase or glycogen synthase kinase inhibitor affects cell proliferation and gene expression. PLoS One 2021; 16:e0257839. [PMID: 34582486 PMCID: PMC8478242 DOI: 10.1371/journal.pone.0257839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Snail has been linked to the pathogenesis of rheumatoid arthritis (RA). We plan to investigate the regulation of Snail in response to TNF-α, histone acetylation, and glycogen synthase kinase-3 (GSK)-3 inhibition in fibroblast-like synoviocytes (FLSs). METHODS FLSs from rats with collagen-induced arthritis (CIA) were collected and treated with TNF-α alone or a combination with trichostatin A (TSA), a pan-histone deacetylase inhibitor and lithium chloride (LiCl), a glycogen synthase kinase-3 (GSK)-3 inhibitor. RESULTS We demonstrated for the first time that nuclear expression of Snail in FLSs from rats with CIA was correlated with the levels of extracellular TNF-α and acetylation status. Cell proliferation and viability of CIA FLSs were reduced in response to TSA treatment and short-hairpin RNA specific to Snail. LiCl treatment increased Snail and cadherin-11 (Cad-11) expression in CIA FLSs. CONCLUSION We suggested from this study that targeting TNF-α-histone deacetylase-Snail signaling axis or the Wnt signaling pathway in FLSs might provide therapeutic interventions for the treatment of RA in the future.
Collapse
Affiliation(s)
- Po-Chuan Shen
- Department of Orthopedics, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Po-Chun Chang
- Department of Orthopedics, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Jeng-Long Hsieh
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Piao X, Zhou J, Xue L. Triptolide decreases rheumatoid arthritis fibroblast-like synoviocyte proliferation, invasion, inflammation and presents a therapeutic effect in collagen-induced arthritis rats via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling. Int Immunopharmacol 2021; 99:108010. [PMID: 34358861 DOI: 10.1016/j.intimp.2021.108010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Our previous study observed that long non-coding RNA (lncRNA) RP11-83J16.1 promoted rheumatoid arthritis (RA)-fibroblast-like synoviocyte (RA-FLS) proliferation, invasion and inflammation, which was downregulated by triptolide treatment. Therefore, the present study aimed to further investigate the mechanism and interaction between triptolide and lncRNA RP11-83J16.1 in RA treatment in vitro and in vivo. METHODS RA-FLS was isolated and treated by different concentration of triptolide and lncRNA RP11-83J16.1 overexpression plasmid. Furthermore, collagen-induced arthritis (CIA) rat model was constructed followed by triptolide and lncRNA RP11-83J16.1 overexpression plasmid treatment. RESULTS Triptolide inhibited RA-FLS viability and lncRNA RP11-83J16.1 expression in a dose-dependent manner. Afterward, triptolide treatment inhibited RA-FLS proliferation, invasion, levels of inflammatory markers (TNF-α, IL-1β, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and β-catenin signaling, but promoted apoptosis. However, lncRNA RP11-83J16.1 overexpression weakened the effects of triptolide on regulating RA-FLS cell behaviors, URI1 signaling and β-catenin signaling. In CIA model, triptolide decreased arthritis score, hyperproliferation of synovial cells, inflammation infiltration of synovial tissue, inflammatory markers (TNF-α, IL-1β, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and β-catenin signaling, but increased cell apoptosis rate of synovial tissue. Nevertheless, lncRNA RP11-83J16.1 curtailed the treatment effect of triptolide in CIA model. CONCLUSION Triptolide decreases RA-FLS proliferation, invasion, inflammation and presents a therapeutic effect in CIA model via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling.
Collapse
Affiliation(s)
- Xuemei Piao
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
9
|
Jiang H, Liu J, Fan C, Wang J, Li W. lncRNAS56464.1 as a ceRNA promotes the proliferation of fibroblast‑like synoviocytes in experimental arthritis via the Wnt signaling pathway and sponges miR‑152‑3p. Int J Mol Med 2021; 47:17. [PMID: 33448322 PMCID: PMC7834957 DOI: 10.3892/ijmm.2021.4850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that occurs in approximately 1.0% of the general population. In RA patients, physical disability and joint damage are the major prognostic factors, which are associated with a reduction in the quality of life and early mortality. At present, the exact molecular mechanism of RA remains elusive. Long noncoding RNAs (lncRNAs) have been revealed to play a regulatory role in the pathogenesis of RA. To reveal the function of lncRNAs in rheumatoid arthritis, lncRNAS56464.1 was screened to verify its targeting of the microRNA (miR)-152-3p/Wnt pathway and its effect on the proliferation of fibroblast-like synoviocytes (FLS). In the present study, based on the competing endogenous RNA (ceRNA) theory, siRNA was designed for transfection into FLS to calculate the lncRNAS56464.1 interference efficiency and then the effect of lncRNAS56464.1 interference on FLS proliferation was detected by MTT assay. Then, lncRNAS56464.1 targeting of the miR-152-3p/Wnt pathway was detected by a dual-luciferase reporter assay. In addition, RT-qPCR, immunofluorescence and western blotting techniques were employed to detect the expression of lncRNAS56464.1, miR-152-3p and some key genes of the Wnt signaling pathway in FLS after lncRNAS56464.1 interference. The results revealed that lncRNAS56464.1 could combine with miR-152-3p and promoted the proliferation of FLS. In addition, lncRNAS56464.1 interference could not only decrease the proliferation of FLS and the expression of Wnt1, β-catenin, c-Myc, cyclin D1, and p-GSK-3β/GSK-3β, but it also increased the expression of SFRP4. The present data indicated that lncRNAS56464.1 could target the miR-152-3p/Wnt pathway to induce synovial cell proliferation and then participate in the pathogenesis of RA.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jing Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Weiping Li
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
10
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Manohar S, Camacho-Magallanes A, Echeverria C, Rogers CD. Cadherin-11 Is Required for Neural Crest Specification and Survival. Front Physiol 2020; 11:563372. [PMID: 33192560 PMCID: PMC7662130 DOI: 10.3389/fphys.2020.563372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023] Open
Abstract
Neural crest (NC) cells are multipotent embryonic cells that form melanocytes, craniofacial bone and cartilage, and the peripheral nervous system in vertebrates. NC cells express many cadherin proteins, which control their specification, epithelial to mesenchymal transition (EMT), migration, and mesenchymal to epithelial transition. Abnormal NC development leads to congenital defects including craniofacial clefts as well as NC-derived cancers. Here, we identify the role of the type II cadherin protein, Cadherin-11 (CDH11), in early chicken NC development. CDH11 is known to play a role in NC cell migration in amphibian embryos as well as cell survival, proliferation, and migration in cancer cells. It has also been linked to the complex neurocristopathy disorder, Elsahy-Waters Syndrome, in humans. In this study, we knocked down CDH11 translation at the onset of its expression in the NC domain during NC induction. Loss of CDH11 led to a reduction of bonafide NC cells in the dorsal neural tube combined with defects in cell survival and migration. Loss of CDH11 increased p53-mediated programmed-cell death, and blocking the p53 pathway rescued the NC phenotype. Our findings reveal an early requirement for CDH11 in NC development and demonstrated the complexity of the mechanisms that regulate NC development, where a single cell-cell adhesion protein simultaneous controls multiple essential cellular functions to ensure proper specification, survival, and transition to a migratory phase in the dorsal neural tube. Our findings may also increase our understanding of early cadherin-related NC developmental defects.
Collapse
Affiliation(s)
- Subrajaa Manohar
- Department of Biology, School of Math and Science, California State University Northridge, Northridge, CA, United States
| | - Alberto Camacho-Magallanes
- Department of Biology, School of Math and Science, California State University Northridge, Northridge, CA, United States
| | - Camilo Echeverria
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, United States
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, United States
| |
Collapse
|
12
|
Greco CT, Akins RE, Epps TH, Sullivan MO. Attenuation of Maladaptive Responses in Aortic Adventitial Fibroblasts through Stimuli-Triggered siRNA Release from Lipid-Polymer Nanocomplexes. ADVANCED BIOSYSTEMS 2017; 1:1700099. [PMID: 29392169 PMCID: PMC5788321 DOI: 10.1002/adbi.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid-siRNA assemblies are modified with photo-responsive polymers to enable spatiotemporally-controlled silencing of interleukin 1 beta (IL1β) and cadherin 11 (CDH11), two genes that are essential drivers of maladaptive responses in human aortic adventitial fibroblasts (AoAFs). These hybrid nanocomplexes address the critical challenge of locally mitigating fibrotic actions that lead to the high rates of vascular graft failures. In particular, the lipid-polymer formulations provide potent silencing of IL1β and CDH11 that is precisely modulated by a photo-release stimulus. Moreover, a dynamic modeling framework is used to design a multi-dose siRNA regimen that sustains knockdown of both genes over clinically-relevant timescales. Multi-dose suppression illuminates a cooperative role for IL1β and CDH11 in pathogenic adventitial remodeling and is directly linked to desirable functional outcomes. Specifically, myofibroblast differentiation and cellular proliferation, two of the primary hallmarks of fibrosis, are significantly attenuated by IL1β silencing. Meanwhile, the effects of CDH11 siRNA treatment on differentiation become more pronounced at higher cell densities characteristic of constrictive adventitial remodeling in vivo. Thus, this work offers a unique formulation design for photo-responsive gene suppression in human primary cells and establishes a new dosing method to satisfy the critical need for local attenuation of fibrotic responses in the adventitium surrounding vascular grafts.
Collapse
Affiliation(s)
- Chad T Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Robert E Akins
- Department of Biomedical Research, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Xing R, Jin Y, Sun L, Yang L, Li C, Li Z, Liu X, Zhao J. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Exp Immunol 2016; 184:147-58. [PMID: 26646950 DOI: 10.1111/cei.12751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial fibroblast hyperplasia and bone erosion. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA pathogenesis through aggressive migration and matrix invasion, and certain proinflammatory cytokines may affect synoviocyte invasion. Whether interleukin (IL)-21 influences this process remains controversial. Here, we evaluated the potential regulatory effect of IL-21 on the migration, invasion and matrix metalloproteinase (MMP) expression in RA-FLS. We found that IL-21 promoted the migration, invasion and MMP (MMP-2, MMP-3, MMP-9, MMP-13) production in RA-FLS. Moreover, IL-21 induced activation of the phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways, and blockage of these pathways [PI3K/protein kinase B (AKT) inhibitor LY294002, STAT-3 inhibitor STA-21 and ERK1/2 inhibitor PD98059] attenuated IL-21-induced migration and secretion of MMP-3 and MMP-9. In conclusion, our results suggest that IL-21 promotes migration and invasion of RA-FLS. Therefore, therapeutic strategies targeting IL-21 might be effective for the treatment of RA.
Collapse
Affiliation(s)
- R Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - Y Jin
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - L Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - L Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - C Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - Z Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, PR China
| | - X Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - J Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|