1
|
Asevedo EA, Ramos Santiago L, Kim HJ, Syahputra RA, Park MN, Ribeiro RIMA, Kim B. Unlocking the therapeutic mechanism of Caesalpinia sappan: a comprehensive review of its antioxidant and anti-cancer properties, ethnopharmacology, and phytochemistry. Front Pharmacol 2025; 15:1514573. [PMID: 39840104 PMCID: PMC11747472 DOI: 10.3389/fphar.2024.1514573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Herbal medicine are an invaluable reservoir of bioactive compounds, offering immense potential for novel drug development to address a wide range of diseases. Among these, Caesalpinia sappan has gained recognition for its historical medicinal applications and substantial therapeutic potential. This review explores the ethnopharmacological significance, phytochemical composition, and pharmacological properties of C. sappan, with a particular focus on its anticancer activities. Traditionally, C. sappan has been utilized for treating respiratory, gastrointestinal, and inflammatory conditions, demonstrating its broad therapeutic scope. The plant's rich array of bioactive compounds-flavonoids, triterpenoids, phenolic acids, and glycosides-forms the basis of its potent antioxidant, anti-inflammatory, and pharmacological effects. Modern pharmacological research has further substantiated its versatility, revealing anticancer, anti-diabetic, anti-infective, and hepatoprotective properties. However, significant challenges remain, including the need to unravel the precise molecular mechanisms underlying its anticancer effects, refine extraction and isolation methods for bioactive compounds, and validate its safety and efficacy through well-designed clinical trials. Particularly noteworthy is C. sappan's potential in combination therapies, where it may synergistically target multiple cancer pathways, enhance therapeutic outcomes, and mitigate adverse effects. This review synthesizes the findings from the past decade, providing a comprehensive evaluation of C. sappan's pharmacological promise while identifying critical areas for future research. By addressing these gaps, C. sappan could serve as a cornerstone for innovative therapeutic strategies, offering hope for improved management of cancer and other complex diseases.
Collapse
Affiliation(s)
- Estéfani Alves Asevedo
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Livia Ramos Santiago
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Jeong JY, Jung IG, Yum SH, Hwang YJ. In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2023; 16:1491. [PMID: 37895962 PMCID: PMC10610001 DOI: 10.3390/ph16101491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of healthcare-associated infections. Medicinal plants have long been used in the traditional treatment of diseases or syndromes worldwide. Combined use of plant extracts could improve the effectiveness of pharmacological action by obtaining synergism, acting on multiple targets simultaneously, reducing the doses of individual components, and minimizing side effects. We aimed to investigate the synergistic inhibitory effects of selected medicinal plants (Caesalpinia sappan L. (CS), Glycyrrhiza uralensis Fisch. (GU), Sanguisorba officinalis L. (SO), and Uncaria gambir Roxb. (UG)) on the bacterial growth of MRSA and its clinical isolates. SO and UG extracts generated the best synergistic interaction as adjudged by checkerboard synergy assays. MICs of the individual extracts decreased 4-fold from 250 to 62.5 μg/mL, respectively. The SO + UG combination was further evaluated for its effects on bacterial growth inhibition, minimum bactericidal/inhibitory concentration (MBC/MIC) ratio, and time-kill kinetics. The results indicate that the SO + UG combination synergistically inhibited the bacterial growth of MRSA strains with bactericidal effects. SO + UG combination also exhibited more potent effects against clinical isolates. In multistep resistance selection experiments, both standard and isolates of MRSA showed no resistance to the SO + UG combination even after repeated exposure over fourteen passages. Our data suggest that using plant extract combinations could be a potential strategy to treat MRSA infections.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - In-Geun Jung
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hoon Yum
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - You-Jin Hwang
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Moreno Cardenas C, Çiçek SS. Structure-dependent activity of plant natural products against methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1234115. [PMID: 37649631 PMCID: PMC10463185 DOI: 10.3389/fmicb.2023.1234115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes for nosocomial infections and has been classified as "high priority pathogen" by the World Health Organization. Its ability to develop resistances has been a challenge for the last decades and is still a threat to health care systems, as strains with resistances to the so-called drugs of last resort have been discovered. Therefore, new antibiotics are urgently needed. Natural products are an important source for the development of new drugs, thereby mostly serving as lead compounds for further modification. In this review, the data on plant natural products with reported anti-MRSA activity until the end of 2022 is discussed, highlighting the most effective drugs with respect to their inhibitory concentrations as well as with regard to eventual synergistic effects with existing antibiotics. In the latter sense, the class of alkaloids must be mentioned, exhibiting additive or synergistic effects by inhibiting bacterial efflux pumps. With regard to the antibiotic activity, phloroglucinol derivatives certainly belong to the most promising compounds, revealing several candidates with remarkable effects, e.g., lupulone, ivesinol, rhodomyrtone, aspidinol, or hyperforin. Also, the class of terpenoids yielded noteworthy compounds, such as the sesquiterpene lactones parthenolide and lactopicrin as well as acetophenone sesquiterpenes and sphaerodiene type diterpenoids, respectively. In addition, pronounced effects were observed for the macrolide neurymenolide A and three flavonol dicoumaroylrhamnosides.
Collapse
Affiliation(s)
| | - Serhat S. Çiçek
- Department of Pharmaceutical Biology, Institute of Pharmacy, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Wang S, Jiang K, Muthusamy R, Kalaimani S, Selvababu AP, Balupillai A, Narenkumar J, Jeevakaruniyam SJ. Protosappanin-B suppresses human melanoma cancer cell growth through impeding cell survival, inflammation and proliferative signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Qi B, Zhang X, Yu H, Bao Y, Wu N, Jia D. Brazilin prevents against myocardial ischemia-reperfusion injury through the modulation of Nrf2 via the PKC signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:312. [PMID: 33708939 PMCID: PMC7944319 DOI: 10.21037/atm-20-4414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Brazilin, a major ingredient of Caesalpinia sappan L., possesses multiple pharmaceutical activities, although whether or not brazilin exerts any protective effect on myocardial ischemia-reperfusion injury (MIRI) has not yet been reported. The present study determined the cardioprotective effects of brazilin, and elucidated the role of nuclear factor E2-associated factor 2 (Nrf2) in this process. Methods Following treatment with brazilin, H9c2 cells were subjected to 6 h of hypoxia/3 h of reoxygenation. CCK-8 assay and flow cytometry were employed to detect cell viability and apoptosis, respectively. Furthermore, after brazilin treatment, isolated rat hearts underwent 30 min of ischemia, followed by 90 min of reperfusion. Triphenyltetrazolium chloride (TTC) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining were performed to measure myocardial infarct size and apoptosis, respectively. The changes in the levels of proteins were detected by western blotting. Results Brazilin treatment dose-dependently led to a significant enhancement in cell viability, a reduction in myocardial infarct size, and a decrease in release of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Moreover, brazilin also remarkably inhibited apoptosis and led to various improvements in cardiac function. Additionally, brazilin treatment caused a marked alleviation of oxidative stress, as evidenced by the fact that brazilin reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD) and glutathione peroxidase (GXH-Px). Mechanistically, it was found that brazilin induced Nrf2 nuclear translocation, with a concomitant upregulation of both heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase (NQO1) expression. Furthermore, the phosphorylation level and transcriptional activity of Nrf2 were enhanced by brazilin, although these enhancements were abrogated by treatment with a protein kinase C (PKC) inhibitor. Finally, it was observed that the protective effects of brazilin could be negated through inhibition of Nrf2, which suggested that the cardioprotection afforded by brazilin was Nrf2-dependent. Conclusions Taken together, our results have demonstrated that brazilin may afford protection against MIRI through the activation of Nrf2 via the PKC signaling pathway. These results may lay the foundation for the further use of brazilin in the prevention of MIRI in clinical practice.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hang Yu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yandong Bao
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Nan Wu
- The Central Laboratory of the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dalin Jia
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
de Souza Feitosa Lima IM, Zagmignan A, Santos DM, Maia HS, Dos Santos Silva L, da Silva Cutrim B, Vieira SL, Bezerra Filho CM, de Sousa EM, Napoleão TH, Krogfelt KA, Løbner-Olesen A, Paiva PMG, Nascimento da Silva LC. Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci Rep 2019; 9:18159. [PMID: 31796807 PMCID: PMC6890730 DOI: 10.1038/s41598-019-54616-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is recognized as an important pathogen causing a wide spectrum of diseases. Here we examined the antimicrobial effects of the lectin isolated from leaves of Schinus terebinthifolia Raddi (SteLL) against S. aureus using in vitro assays and an infection model based on Galleria mellonella larvae. The actions of SteLL on mice macrophages and S. aureus-infected macrophages were also evaluated. SteLL at 16 µg/mL (8 × MIC) increased cell mass and DNA content of S. aureus in relation to untreated bacteria, suggesting that SteLL impairs cell division. Unlike ciprofloxacin, SteLL did not induce the expression of recA, crucial for DNA repair through SOS response. The antimicrobial action of SteLL was partially inhibited by 50 mM N-acetylglucosamine. SteLL reduced staphyloxathin production and increased ciprofloxacin activity towards S. aureus. This lectin also improved the survival of G. mellonella larvae infected with S. aureus. Furthermore, SteLL induced the release of cytokines (IL-6, IL-10, IL-17A, and TNF-α), nitric oxide and superoxide anion by macrophagens. The lectin improved the bactericidal action of macrophages towards S. aureus; while the expression of IL-17A and IFN-γ was downregulated in infected macrophages. These evidences suggest SteLL as important lead molecule in the development of anti-infective agents against S. aureus.
Collapse
Affiliation(s)
| | - Adrielle Zagmignan
- Programas de Pós-Graduação, Universidade Ceuma, São Luís, Maranhão, Brazil
| | | | | | | | | | | | | | | | | | - Karen Angeliki Krogfelt
- Department of Viral and Microbial Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
7
|
Optimization of on-chip bacterial culture conditions using the Box-Behnken design response surface methodology for faster drug susceptibility screening. Talanta 2019; 194:627-633. [DOI: 10.1016/j.talanta.2018.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/25/2023]
|
8
|
Protosappanin B promotes apoptosis and causes G 1 cell cycle arrest in human bladder cancer cells. Sci Rep 2019; 9:1048. [PMID: 30705351 PMCID: PMC6355918 DOI: 10.1038/s41598-018-37553-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to investigate the effects of protosappanin B on the proliferation and apoptosis of bladder cancer cells. The effects of protosappanin B (12.5, 25, 50, 100, or 200 μg/mL, 48 h) on proliferation of SV-HUC-1, T24 and 5637 cells was assessed using the MTT assay. The effects of protosappanin B (100, 150, 200, 250, or 300 μg/mL, 48 h) on cell apoptosis and cell cycle were analyzed using flow cytometry. T24 and 5637 cells treated with 200 µg/mL protosappanin B showed morphological changes (shrinkage, rounding, membrane abnormalities, and reduced adhesion), but protosappanin B had no proliferation arrest effect on SV-HUC-1 cells. Protosappanin B caused concentration-dependent inhibition of cell growth, with IC50 of 82.78 µg/mL in T24 cells and 113.79 µg/mL in 5637 cells. Protosappanin B caused concentration-dependent increases in T24 and 5637 cell apoptosis (100–300 µg/mL). The effects of protosappanin B on the cell cycle in both cell types was G1 arrest with reductions in the proportion of S-phase cells and proliferation index. A proteomics analysis showed that protosappanin B modulated a number of genes involved in the cell cycle. In conclusion, protosappanin B inhibits the proliferation and promotes the apoptosis of T24 and 5637 human bladder cancer cells in a concentration-dependent manner, possibly via interference with cell cycle regulation, preventing G1-to-S transition.
Collapse
|
9
|
Zuo GY, Wang CJ, Han J, Li YQ, Wang GC. Synergism of coumarins from the Chinese drug Zanthoxylum nitidum with antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1814-1820. [PMID: 27912884 DOI: 10.1016/j.phymed.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious therapeutic challenge in current clinic and new drug development. Natural coumarins have diverse bioactivities and the potential of resistance modifying effects. PURPOSE This study is to present in-depth evaluations of in vitro antimicrobial activities of four natural coumarins 5-geranyloxy-7-methoxycoumarin (Gm, 1), (5,7-dimethoxy-8-prenyloxycoumarin (artanin, Ar, 2)), isopimpinellin (Is, 3) and phellopterin (Ph, 4) from Zanthoxylum nitidum (Roxb.) DC. (Rutaceae) extracts, focusing on their potential restoration the activity of conventional antibacterial agents against clinical MRSA strains. METHODS Bioactivity-guided fractionation and spectral analyses were used to isolate the coumarins and identify the structures, respectively. The double broth microdilution method was used to assay the coumarins' alone activity. The classic checkerboard microdilution and dynamic time-killing methods were used to evaluate combinatory effects. RESULTS The four plant coumarins Gm (1), Ar (2), Is (3) and Ph (4) were isolated and identified from Z. nitidum extracts. Coumarins 1-4 displayed promising inhibition against both MSSA and MRSA with minimal inhibitory concentrations (MICs) of 8-64µg/ml, but very weak against Gram-negative pathogen and yeast with MICs of 256 to ≥1024µg/ml. The geranyloxy and prenyloxy substitutions showed to be more active than the methoxy substitution on the coumarin skeletons. 1-4 also showing different extent of synergism with a total of eight conventional antibacterial agents, i.e. chloramphenicol (CL), gentamicin (CN), fosfomycin (FF), levofloxacin (LE), minocycline (MI), piperacillin/tazobactam (P/T), teicoplanin (TE) and vancomycin (VA) against ten clinical MRSA strains. Four to ten of the tested MRSA strains showed bacteriostatic synergy in the eleven combinations. The anti-MRSA modifying effects were related to different arrangement in the combinations with fractional inhibitory concentration indices (FICIs) from 0.187 to 1.125 and the three combinations CN (Is), CL (Ph) and MI (Gm) were the best ones. The enhancement of activity was also shown by 2-64 of dose reduction indices (DRIs) of the combined MICs, with VA (Ph) combination resulted the biggest DRI. The resistance of MRSA to antibacterial agents could be reversed in the combinations of CL (Gm or Ph), LE (Ph) and MI (Is) following the Clinical and Laboratory Standards Institute (CLSI) criteria. Six combinations P/T (Gm), TE (Ar), CN (Is), VA (Ph) and CL (Gm or Ph) also showed bactericidal synergy with Δlog10CFU/ml >2 at 24h incubation. CONCLUSIONS The coumarins showed high potentiating effects of the antibacterial agents against multi-drug resistant SA. The resistance reversal effect of CL, LE and MI warrants further pharmacological investigation on combinatory therapy for the sake of fighting against MRSA infections.
Collapse
Affiliation(s)
- Guo-Ying Zuo
- Research Center for Natural Medicines, Kunming General Hospital of Chengdu Military Command, Kunming 650032, China.
| | - Chun-Juan Wang
- Research Center for Natural Medicines, Kunming General Hospital of Chengdu Military Command, Kunming 650032, China; School of Pharmacy, Kunming Medical University, Kunming 550004, China
| | - Jun Han
- School of Basic Medical Sciences, Yunnan Traditional Chinese Medical College, Kunming 650500, China.
| | - Yu-Qing Li
- School of Basic Medical Sciences, Yunnan Traditional Chinese Medical College, Kunming 650500, China
| | - Gen-Chun Wang
- Research Center for Natural Medicines, Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| |
Collapse
|