1
|
Zang W, Gao D, Yu M, Long M, Zhang Z, Ji T. Oral Delivery of Gemcitabine-Loaded Glycocholic Acid-Modified Micelles for Cancer Therapy. ACS NANO 2023; 17:18074-18088. [PMID: 37717223 PMCID: PMC10540784 DOI: 10.1021/acsnano.3c04793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The clinical utility of gemcitabine, an antimetabolite antineoplastic agent applied in various chemotherapy treatments, is limited due to the required intravenous injection. Although chemical structure modifications of gemcitabine result in enhanced oral bioavailability, these modifications compromise complex synthetic routes and cause unexpected side effects. In this study, gemcitabine-loaded glycocholic acid-modified micelles (Gem-PPG) were prepared for enhanced oral chemotherapy. The in vitro transport pathway experiments revealed that intact Gem-PPG were transported across the intestinal epithelial monolayer via an apical sodium-dependent bile acid transporter (ASBT)-mediated pathway. In mice, the pharmacokinetic analyses demonstrated that the oral bioavailability of Gem-PPG approached 81%, compared to less than 20% for unmodified micelles. In addition, the antitumor activity of oral Gem-PPG (30 mg/kg, BIW) was superior to that of free drug injection (60 mg/kg, BIW) in the xenograft model. Moreover, the assessments of hematology, blood chemistry, and histology all indicated the hypotoxicity profile of the drug-loaded micelles.
Collapse
Affiliation(s)
- Wenqing Zang
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Duo Gao
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Manmei Long
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Zhuan Zhang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Ji
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| |
Collapse
|
2
|
Closset M, Colsoul ML, Goderniaux N, Bihin B, Jamart J, Onorati S, Soumoy L, Hecq JD, Odou P, Galanti L. An ultra-high-performance chromatography method to study the long term stability of gemcitabine in dose banding conditions. J Pharm Biomed Anal 2023; 227:115290. [PMID: 36812796 DOI: 10.1016/j.jpba.2023.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Gemcitabine is an analogue of cytidine arabinoside, used alone or in combination chemotherapy to treat various type of cancer. The dose-banding of gemcitabine provides the opportunity to anticipate the preparation of this anticancer drug on condition of carrying out stability studies. The aim of this study is to develop and validate a stability-indicating ultra-high-performance Liquid Chromatography (UHPLC) method for measuring the concentration of gemcitabine and to evaluate its stability at standardised rounded doses in polyolefin bags. The UHPLC with photodiode array (PDA) detector method was developed and validated (linearity, precision, accuracy, limits of detection and quantification, robustness and degradation test). Thirty polyolefin bags of gemcitabine (1600 mg/292 ml (n = 10), 1800 mg/297 ml (n = 10) and 2000 mg/303 ml (n = 10)) were prepared under aseptic conditions and stored at 5 ± 3 °C and 23 ± 2 °C for 49 days. Physical stability tests were periodically performed: visual and microscopic inspection and optical densities. The chemical stability was evaluated through pH monitoring and chromatographic assays. The results confirm the stability of Gemcitabine at selected standardised rounded doses of 1600 mg, 1800 mg and 2000 mg in NaCl 0.9% polyolefin bags for at least 49 days at 5 ± 3 °C and 23 ± 2 °C, allowing in-advance preparation.
Collapse
Affiliation(s)
- Mélanie Closset
- Medical Laboratory, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium; Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium.
| | - Marie-Lise Colsoul
- Medical Laboratory, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium; Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Nicolas Goderniaux
- Medical Laboratory, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium; Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium; Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Jacques Jamart
- Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Sabrina Onorati
- Medical Laboratory, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Laura Soumoy
- Department of Pharmacy, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium; Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Jean-Daniel Hecq
- Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| | - Pascal Odou
- Université de Lille, CHU Lille, ULR7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Laurence Galanti
- Medical Laboratory, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium; Drug Stability Research Group, CHU UCL Namur, 1 Avenue Therasse, 5530 Yvoir, Belgium
| |
Collapse
|
3
|
Tsarenko E, Schubert US, Nischang I. Nanoparticle Formulation Composition Analysis by Liquid Chromatography on Reversed-Phase Monolithic Silica. Anal Chem 2022; 95:565-569. [PMID: 36548201 PMCID: PMC9850345 DOI: 10.1021/acs.analchem.2c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic-co-glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Those NPs feature a variety of encapsulated drugs including the well-known ibuprofen (Ibu) as well as dexamethasone (Dex) and dexamethasone acetate (DexAce), with the latter being of potential interest for clinical treatment of SARS-CoV-2 patients. All those dissolved formulation compositions have been subjected to liquid chromatography on reversed-phase silica monolithic columns, allowing to quantitatively assess amounts of small molecule drug and NP constituting PLGA polymer in a single run. The chromatographically resolved hydrophobicity differences of the drugs correlated with their formulation loading and were clearly separated from the PLGA matrix polymer with high resolution. Our study identifies the viability of reversed-phase monolithic silica in the chromatography of both small drug molecules and particularly pharmapolymers in a repeatable and simultaneous fashion, and can provide a valuable strategy for analysis of diverse precursor polymer systems and drug components in multifunctional drug formulations.
Collapse
Affiliation(s)
- Ekaterina Tsarenko
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany,Jena
Center for Soft Matter, Friedrich Schiller
University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany,Jena
Center for Soft Matter, Friedrich Schiller
University Jena, Philosophenweg 7, 07743 Jena, Germany,
| | - Ivo Nischang
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany,Jena
Center for Soft Matter, Friedrich Schiller
University Jena, Philosophenweg 7, 07743 Jena, Germany,Phone: +49-3641-948-569.
| |
Collapse
|
4
|
Chen G, Svirskis D, Lu W, Ying M, Li H, Liu M, Wen J. N-trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr Polym 2021; 273:118592. [PMID: 34560993 DOI: 10.1016/j.carbpol.2021.118592] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
N-trimethyl chitosan (TMC) is a multifunctional polymer that can be used in various nanoparticle forms in the pharmaceutical, nutraceutical and biomedical fields. In this study, TMC was used as a mucoadhesive adjuvant to enhance the oral bioavailability and hence antitumour effects of gemcitabine formulated into nanocomplexes composed of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) conjugated with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). A central composite design was applied to achieve the optimal formulation. Cellular uptake and drug transportation studies revealed the nanocomplexes permeate over the intestinal cells via adsorptive-mediated and caveolae-mediated endocytosis. Pharmacokinetic studies demonstrated the oral drug bioavailability of the nanocomplexes was increased 5.1-fold compared with drug solution. In pharmacodynamic studies, the formulation reduced tumour size 3.1-fold compared with the drug solution. The data demonstrates that TMC modified nanocomplexes can enhance gemcitabine oral bioavailability and promote the anticancer efficacy.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China; School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongyu Li
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, AR, USA
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Kato G, Mitome H, Shigematsu S, Utsunomiya A, Shimasaki M, Sasaki Y, Maki T, Yamamoto H, Tanabe T, Funahashi T, Hatae N, Hidaka N, Tanaka M, Akira K. Degradation and inactivation efficacy of ozone water for antineoplastic drugs in hospital settings. J Oncol Pharm Pract 2021; 28:1781-1789. [PMID: 34709082 DOI: 10.1177/10781552211042525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Occupational exposure to antineoplastic drugs in hospital settings is recognized to be hazardous, and as such environmental decontamination including degradation and inactivation of such drugs is recommended. To data, although various agents such as oxidants have been reported to be useful for decontamination, simpler, safer, and more convenient methods are required. In this study, the degradation and inactivation efficacy of ozone water, which has newly been introduced for decontamination of antineoplastic drugs in spills, was investigated for formulations of gemcitabine, irinotecan, and paclitaxel. METHODS Antineoplastic formulations (medicinal ingredient: ∼1.5 μmol) were mixed with 50 mL of ozone water (>4 mg/L). The reactions were monitored by high-performance liquid chromatography, and the degradation mixtures were analyzed by 1H nuclear magnetic resonance spectroscopy in order to obtain the structural information of the degradation products. The formulations of gemcitabine and irinotecan and those degradation mixtures were evaluated for their mutagenicity using the Ames test and cytotoxicity against human cancer cells. RESULTS gemcitabine and irinotecan were found to be readily degraded by the ozone treatment, and their active sites were suggested to be degraded. In contrast, paclitaxel was hard to be decomposed, possibly owing to the consumption of ozone by the polyoxyethylene castor oil added as a pharmaceutical additive of the formulation. No significant mutagenic changes of Salmonella typhimurium strains used for the Ames test were observed for the samples within the concentration ranges examined. The ozone treatment showed obvious increases in cell viability for gemcitabine formulation, and mild increases for irinotecan formulation. CONCLUSIONS Ozone water was shown to be effective as a decomposition agent for the antineoplastic drug formulations examined, although the efficacy depends on the chemical structures of the drugs and the pharmaceutical additives. It was also suggested that ozone treatment has a tendency to decrease the toxicity of the antineoplastic drug formulations. As such, further studies are required in order to clarify the effects and application limitations of ozone water.
Collapse
Affiliation(s)
- Ginjiro Kato
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Hidemichi Mitome
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Saki Shigematsu
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Aya Utsunomiya
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Miho Shimasaki
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Yuta Sasaki
- Division of Pharmacy, 68286National Hospital Organization Shikoku Cancer Center Japan
| | - Tsuneo Maki
- Division of Pharmacy, 68286National Hospital Organization Shikoku Cancer Center Japan
| | - Hiroshi Yamamoto
- Division of Pharmacy, 68286National Hospital Organization Shikoku Cancer Center Japan
| | - Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| | - Noriyuki Hatae
- Faculty of Pharmaceutical Sciences, 68348Yokohama University of Pharmacy, Japan
| | - Noriaki Hidaka
- Division of Pharmacy, 89456Ehime University Hospital, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, 89456Ehime University Hospital, Japan
| | - Kazuki Akira
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan
| |
Collapse
|
6
|
Li W, Zhu X, Zhou X, Wang X, Zhai W, Li B, Du J, Li G, Sui X, Wu Y, Zhai M, Qi Y, Chen G, Gao Y. An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Control Release 2021; 334:376-388. [PMID: 33940058 DOI: 10.1016/j.jconrel.2021.04.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/06/2023]
Abstract
Blockade of the immune checkpoint PD-1/PD-L1 with monoclonal antibodies demonstrated unprecedented clinical efficacies in many cancers. But the orally available low molecular weight inhibitors remain infancy. Compared to small molecules, peptide exhibits better selectivity and fewer side effects, but poor half-life and a big challenge to be orally administrated. Here, we developed a proteolysis-resistant D peptide OPBP-1 (Oral PD-L1 Binding Peptide 1) which could selectively bind PD-L1, significantly block PD-1/PD-L1 interaction and enhance IFN-γ (interferon γ) secretion from CD8+ T cells in human PBMCs (Peripheral blood mononuclear cells). OPBP-1 could significantly inhibit tumor growth in murine colorectal CT26 and melanoma B16-OVA models at a relatively low dose of 0.5 mg/kg, with enhancing the infiltration and function of CD8+ T cells. More interestingly, oral delivery of OPBP-1 loaded TMC (N, N, N-trimethyl chitosan) hydrogel (OPBP-1@TMC) showed promising OPBP-1 oral bioavailability (52.8%) and prolonged half-life (14.55 h) in rats, and also significantly inhibited tumor growth in CT26 model. In conclusion, we discovered and optimized a PD-1/PD-L1 blocking peptide OPBP-1, and subsequently loaded into a TMC based hydrogel oral delivery system, in order to maximally elevate the oral bioavailability of the peptide drug and effectively inhibit tumor growth. These results opened up a new prospect for oral drug development in cancer immunotherapy.
Collapse
Affiliation(s)
- Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingxia Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Yang S, Zhang D, Shen N, Wang G, Tang Z, Chen X. Dihydroartemisinin increases gemcitabine therapeutic efficacy in ovarian cancer by inducing reactive oxygen species. J Cell Biochem 2018; 120:634-644. [PMID: 30256439 DOI: 10.1002/jcb.27421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/12/2018] [Indexed: 01/03/2023]
Abstract
Ovarian cancer is the major cause of death in women gynecological malignancy and gemcitabine (GEM) is commonly used in related chemotherapy. However, more than 90% GEM is catalyzed into an inactive metabolite 2'-deoxy-2',2'-difluorouridine by stromal and cellular cytidine deaminase (CDA). Dihydroartemisinin (DHA), which possesses an intramolecular endoperoxide bridge, could be activated by heme or ferrous iron to produce reactive oxygen species (ROS). The excess ROS generation will excite expression of heme oxygenase-1 and suppress CDA expression. Under low CDA expression, the inactivation of GEM is decreased in turn to exert excellent therapeutic efficiency. Herein, we first studied the ROS generation by DHA in vitro with A2780 cells by means of flow cytometry and confocal laser scanning microscopy. Furthermore, cytotoxicity assay in vitro showed that DHA + GEM had synergistic effect, with molar ratio of DHA and GEM at 10. Eventually, in A2780 ovarian cancer xenograft tumor model, DHA + GEM exhibited significant antitumor efficiency with lower blood toxicity than GEM alone. Noteworthy, the combination treatment group completely eliminated the tumors on day 14.
Collapse
Affiliation(s)
- Shengcai Yang
- College of Chemistry, Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Guanyi Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xuesi Chen
- College of Chemistry, Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
8
|
Chen G, Svirskis D, Lu W, Ying M, Huang Y, Wen J. N-trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J Control Release 2018; 277:142-153. [PMID: 29548985 DOI: 10.1016/j.jconrel.2018.03.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Gemcitabine is a nucleoside analogue effective against a number of cancers. However, the full potential of this drug has not been realised, in part due to low oral bioavailability and frequent dosing requirements. This study reports the synthesis, in-vitro, ex-vivo and in-vivo evaluation of trimethyl chitosan (TMC) - CSKSSDYQC (CSK) peptide conjugates capable of enhancing the oral bioavailability of gemcitabine due to the ability to target intestinal goblet cells and promote intestinal cellular uptake. TMC was synthesized by a novel two-step methylation method to improve quanternization and yield. The CSK-TMC conjugates were prepared by ionic gelation to achieve particles sized at 173.6 ± 6.8 nm, zeta potential of +18.5 ± 0.2 mV and entrapment efficiency of 66.4 ± 0.1%, capable of sustained drug release. By encapsulating gemcitabine into CSK-TMC conjugates, an increased amount of drug permeated through porcine intestinal epithelial membranes compared with the unconjugated TMC nanoparticles (NPs). The rate of cellular uptake of drug loaded conjugates into HT29-MTX-E12 intestinal goblet cells, was time- and concentration-dependant. The conjugates underwent active transport associated with adsorptive mediated, clathrin and caveolae mediated endocytosis. In cellular transport studies, drug loaded conjugates had greater drug transport capability compared with drug solution and TMC NPs over the co-cultured Caco-2/HT29-MTX-E12 cell monolayer. The drug loaded conjugates exhibited electrostatic interaction with the intestinal epithelial cells. Both P-glycoprotein (P-gp) and multiple resistance protein-2 (MRP2) efflux affected the cellular transport of the conjugates. Importantly, during the pharmacokinetic studies, the orally administrated drug loaded into TMC NPs showed an improved oral bioavailability of 54.0%, compared with gemcitabine solution of 9.9%. Notable, the CSK-TMC conjugates further improved oral bioavailability to 60.1% and reduced the tumour growth rate in a BALB/c nude mouse model, with a 5.1-fold and 3.3-fold reduction compare with the non-treated group and gemcitabine solution group. Furthermore, no major evidence of toxicity was discernible on histologic studies of selected organs. In conclusion, the presented CSK-TMC conjugates and TMC nanoparticles both significantly improve the oral bioavailability of gemcitabine and have the potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmacy, Faculty of Medical and Health Science, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Science, University of Auckland, New Zealand
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Science, University of Auckland, New Zealand.
| |
Collapse
|
9
|
Suchaoin W, Bernkop-Schnürch A. Nanocarriers protecting toward an intestinal pre-uptake metabolism. Nanomedicine (Lond) 2017; 12:255-269. [PMID: 28093952 DOI: 10.2217/nnm-2016-0331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pre-uptake metabolism within the GI tract is responsible for the poor oral bioavailability of numerous drugs. As nanocarriers function as a 'shield', protecting incorporated drugs from enzymatic attack, there is an increasing interest in utilizing them as a tool for overcoming drug degradation. Degradation of carriers resulting in the release of incorporated drugs, mucus permeation, enzyme inhibitory properties and their toxicity are crucial factors that must be taken into account when designing proper nanocarriers. The use of polymer- and lipid-based nanocarriers as protective vehicles are discussed within this review. Lipid-based carriers and novel mucopenetrating particles seem to have a great potential in avoiding metabolizing enzymes. Accordingly, nanocarriers are promising tools for improving the bioavailability of drugs, being sensitive to a pre-uptake metabolism.
Collapse
Affiliation(s)
- Wongsakorn Suchaoin
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst 2017; 142:2273-2321. [DOI: 10.1039/c7an00367f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide an overview of the analytical methods available for the quantification of antineoplastic drugs in pharmaceutical formulations, biological and environmental samples.
Collapse
Affiliation(s)
- Nicolas Guichard
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- Geneva
- Switzerland
| | - Pascal Bonnabry
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | | |
Collapse
|