1
|
Paiva KLR, Radicchi MA, Báo SN. In Vitro Evaluation of NLS-DTX Activity in Triple-Negative Breast Cancer. Molecules 2022; 27:molecules27154920. [PMID: 35956870 PMCID: PMC9370415 DOI: 10.3390/molecules27154920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most lethal diseases in the world, and the development and improvement of treatments used in cancer therapies are extremely important for a better quality of life for patients. In view of the current problems in drug administration such as low solubility and adverse effects, the activity of a solid lipid nanoparticle containing docetaxel (SLN-DTX), a drug already used in conventional therapies, was evaluated in a cell line (MDA-MB-231) of one of the most aggressive types of breast cancer with the worst prognosis, triple-negative breast cancer. Viability tests indicated that SLN-DTX has a greater dependence on the treatment dose when compared to the free drug, which indicates a more controlled release of the drug, and both reduced viability by around 50% at a concentration of 1 µg/mL after 72 h. Transmission electron microscopy (TEM) and confocal and light microscopy analyses indicated that after treatment the cells enter a mitotic catastrophe, characteristic of antimitotic drugs that usually make cells progress to death or senescence. Cells treated with both DTX and SLN-DTX showed significant inhibition of mobility, 73.6% and 66.5% when treated with SLN-DTX and DTX, respectively, compared to the 11.4% of the control after 72 h, characteristics that are very relevant in tumor development and progression. SLN-DTX demonstrated its great potential as a nanocarrier by maintaining and improving the drug’s action in the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Karen L. R. Paiva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Postgraduate Program of Molecular Pathology, School of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Marina A. Radicchi
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Postgraduate Program of Molecular Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Sônia N. Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Correspondence:
| |
Collapse
|
2
|
Yuan Y, Zhang Q, Yan Y, Gong M, Zhao Q, Bao Z, Liu K, Wang S. Designed construction of tween 60@2β-CD self-assembly vesicles as drug delivery carrier for cancer chemotherapy. Drug Deliv 2018; 25:623-631. [PMID: 29463124 PMCID: PMC7025689 DOI: 10.1080/10717544.2018.1440448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a simple strategy to prepare Tween 60@2β-CD self-assembly vesicles in aqueous solution as a new drug delivery carrier for cancer chemotherapy. The spherical shape of vesicles was confirmed by transmission electron microscopy (TEM) and mean particle sizes were about 33.7 nm, as measured by dynamic light scattering, micro-IR results indicated that the self-assembly vesicles was driven by hydrogen bonding. Hydrophilic doxorubicin (DOX) was successfully loaded into the self-assembly vesicles with drug loading content of 7.85% and loading efficiency of 42%. In addition, an in vitro cytotoxicity study and cellular uptake assays demonstrated that the DOX-loaded Tween 60@2β-CD vesicles markedly enhanced the cellular uptake and cytotoxicity of DOX toward the Hela cells. Furthermore, when used to evaluate the in vivo therapeutic efficacy in mice bearing the breast cell line (4T1), DOX-loaded vesicles exhibited superior inhibition of tumor growth compared with the DOX solutions.
Collapse
Affiliation(s)
- Yue Yuan
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Qin Zhang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Yun Yan
- b Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing , P. R. China
| | - Miaomiao Gong
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Qi Zhao
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Zhihong Bao
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Kaerdun Liu
- b Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing , P. R. China
| | - Siling Wang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| |
Collapse
|
3
|
da Silva GH, Fernandes MA, Trevizan LNF, de Lima FT, Eloy JO, Chorilli M. A Critical Review of Properties and Analytical Methods for the Determination of Docetaxel in Biological and Pharmaceutical Matrices. Crit Rev Anal Chem 2018; 48:517-527. [DOI: 10.1080/10408347.2018.1456315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gilmar Hanck da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Mariza Aires Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Felipe Tita de Lima
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| |
Collapse
|
4
|
Qureshi OS, Kim HS, Zeb A, Choi JS, Kim HS, Kwon JE, Kim MS, Kang JH, Ryou C, Park JS, Kim JK. Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. J Microencapsul 2017; 34:250-261. [PMID: 28557649 DOI: 10.1080/02652048.2017.1337247] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to develop docetaxel-incorporated lipid nanoparticles (DTX-NPs) to improve the pharmacokinetic behaviour of docetaxel (DTX) after oral and parenteral administration via sustained release. DTX-NPs were prepared by nanotemplate engineering technique with palmityl alcohol as a solid lipid and Tween-40/Span-40/Myrj S40 as a surfactants mixture. Spherical DTX-NPs below 100 nm were successfully prepared with a narrow particle size distribution, 96% of incorporation efficiency and 686 times increase in DTX solubility. DTX-NPs showed a sustained release over 24 h in phosphate-buffered saline and simulated gastric and intestinal fluids, while DTX-micelles released DTX completely within 12 h. The half-maximal inhibitory concentration (IC50) of DTX-NPs against human breast cancer MCF-7 cells was 1.9 times lower than that of DTX-micelles and DTX solution. DTX-NPs demonstrated 3.7- and 2.8-fold increase in the area under the plasma concentration-time curve compared with DTX-micelles after oral and parenteral administration, respectively.
Collapse
Affiliation(s)
- Omer Salman Qureshi
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea.,b Faculty of Pharmacy , The University of Lahore , Lahore , Punjab , Pakistan
| | - Hyung-Seo Kim
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| | - Alam Zeb
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea.,c Riphah Institute of Pharmaceutical Sciences , Riphah International University , Islamabad , Pakistan
| | - Jin-Seok Choi
- d College of Pharmacy , Chungnam National University , Daejeon , Republic of Korea
| | - Hoo-Seong Kim
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| | - Jung-Eun Kwon
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| | - Myung-Sic Kim
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| | - Jong-Ho Kang
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| | - Chongsuk Ryou
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| | - Jeong-Sook Park
- d College of Pharmacy , Chungnam National University , Daejeon , Republic of Korea
| | - Jin-Ki Kim
- a College of Pharmacy, Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi , Republic of Korea
| |
Collapse
|
5
|
Yan H, Wei P, Song J, Jia X, Zhang Z. Enhanced anticancer activity in vitro and in vivo of luteolin incorporated into long-circulating micelles based on DSPE-PEG2000 and TPGS. ACTA ACUST UNITED AC 2016; 68:1290-8. [PMID: 27465923 DOI: 10.1111/jphp.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aimed to evaluate enhanced anticancer activity in vitro and in vivo of luteolin-loaded long-circulating micelles (DTLLMs) formulated. METHODS DTLLM was the luteolin formulation prepared with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly (ethylene glycol 2000) (DSPE-PEG2000 ) and d-α-tocopheryl polyethylene glycol succinate (TPGS) in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumour efficacy and in vivo tumour targeting of these micelles using non-small cell lung cancer (NSCLC) A549 cells. KEY FINDINGS Results showed that the obtained micelles have a mean particle size of around 42.34 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, DTLLM displayed a more potent antiproliferative action on A549 cell lines than luteolin; half-maximal inhibitory concentration (IC50 ) was 7.29 vs 19.14 μg/ml, respectively. The antitumour efficacy test in nude mice showed that DTLLM exhibited significantly higher antitumour activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the long-circulating micelles formulation achieved targeted drug delivery and make drug release slow to prolong the circulating time. CONCLUSION DTLLM might be a potential antitumour formulation.
Collapse
Affiliation(s)
- Hongmei Yan
- Nanjing University of Chinese Medicine, Nanjing, China.,Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pingping Wei
- Department of Pharmacy, Nanjing Hospital, Jiangsu Corps, The Armed Police Force, PLA, Nanjing, China
| | - Jie Song
- Nanjing University of Chinese Medicine, Nanjing, China.,Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaobin Jia
- Nanjing University of Chinese Medicine, Nanjing, China. .,Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhenhai Zhang
- Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Raza K, Kumar N, Misra C, Kaushik L, Guru SK, Kumar P, Malik R, Bhushan S, Katare OP. Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int J Biol Macromol 2016; 88:206-212. [PMID: 27037052 DOI: 10.1016/j.ijbiomac.2016.03.064] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022]
Abstract
Docetaxel is one of the promising drugs and employed for the management of variety of cancers. However, challenges like poor-bioavailability, low tissue-permeability, compromised aqueous solubility and dose-dependent side-effects limit its clinical applications. Whereas, PLGA-based polymeric micelles possess the ability to enhance the tissue permeability of drugs and increase their biocompatibility. Henceforth, it was aimed to fabricate the dextran-PLGA-based polymeric-micelles loaded with docetaxel to explore the potential benefits in drug delivery. Dextran was chemically linked to PLGA and the linkage was confirmed by FT-IR, UV and NMR-spectroscopy. Critical-micelle-concentration of amphiphilic polymer was determined and drug was encapsulated by diffusion technique and erythrocyte compatibility. The system was evaluated for drug release profile and in vitro cytotoxicity studies. The pharmacokinetic profile was studied in rats. The micelles obtained were of 96.5±2.5nm and offered drug encapsulation of order of 54.85±1.21%.The cytotoxicity of drug against MCF-7 and MDA-MB-231 cell lines was enhanced by approx. 100%. The pharmacokinetic profile was substantially modified and about 16-folds enhancement in bioavailability was observed vis-à-vis plain drug. The approach was not only able to control the drug release, but also offered promise to enhance the pharmacokinetic and pharmacodynamic potential of docetaxel and similar anticancer agents.
Collapse
Affiliation(s)
- Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305817, India.
| | - Nitesh Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305817, India
| | - Charu Misra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305817, India
| | - Lokesh Kaushik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305817, India
| | - Santosh Kumar Guru
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305817, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305817, India
| | - Shashi Bhushan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - O P Katare
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Jain A, Thakur K, Sharma G, Kush P, Jain UK. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym 2015; 137:65-74. [PMID: 26686106 DOI: 10.1016/j.carbpol.2015.10.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 12/20/2022]
Abstract
The present investigation aimed at the fabrication and characterization of ionically cross-linked docetaxel (DTX) loaded chitosan nanoparticles (DTX-CH-NP) using ionic gelation technique with sodium tripolyphosphate (TPP) as the cross-linking agent. The formulated nanoparticles were characterized in terms of particle size, drug entrapment efficiency (EE), scanning electron microscopy (SEM), in vitro release and cytotoxicity studies. Formulation factors (chitosan, TPP and drug concentration) were examined systematically for their effects on size of the nanoparticles. The average size of the nanoparticles was observed to be in the range of 159.2 ± 3.31 to 220.7 ± 2.23 nm with 78-92% encapsulation efficiency (EE). The in vitro cytotoxicity studies on breast cancer cell lines (MDA-MB-231) revealed the advantages of DTX-CH-NP over pure DTX with approximately 85% cell viability reduction. The results indicate that systematic modulation of the surface charge and particle size of ionically cross-linked nanoparticles can be readily achieved with the right control of critical processing parameters. Thus, DTX-CH-NP presents a promising delivery alternative for breast cancer treatment.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali 140110, India.
| | - Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Preeti Kush
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali 140110, India
| | - Upendra K Jain
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali 140110, India
| |
Collapse
|