1
|
Sakthi Velu K, Jegatheeswaran S, Akhtar MS, Khan MR, Mohandoss S, Ahmad N. Formulation and Characterization of β-Cyclodextrins-Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells. Pharmaceutics 2024; 16:1494. [PMID: 39771475 PMCID: PMC11677481 DOI: 10.3390/pharmaceutics16121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. Methods: This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. Results: The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex. Characterization of the solid β-CD:NTX complexes was confirmed via FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and DSC-TGA analyses. Molecular docking studies revealed that the NTX thiazole ring with the nitro group was positioned within the β-CDs cavity, while the benzene ring remained outside. Phase solubility tests showed that β-CD:NTX complexes were formed with high stability constants, demonstrating a linear increase in NTX solubility as the β-CD concentration increased. Dissolution tests revealed rapid and nearly complete NTX release within 90 min for β-CD:NTX and Hβ-CD:NTX complexes. The β-CD:NTX complexes were tested for their antiviral activity against Herpes simplex virus (HSV-1) cultures. Results showed that the Hβ-CD:NTX complex had significantly higher antiviral efficacy than β-CD:NTX and free NTX alone. Moreover, cytotoxicity and cellular uptake studies on Vero cells indicated that the Hβ-CD:NTX complex demonstrated lower cytotoxicity and had the highest IC50 value, followed by β-CD:NTX and free NTX. Conclusions: These findings suggest that Hβ-CD:NTX inclusion complexes may serve as effective carriers for delivering NTX in HSV-1 treatments using Vero cell models.
Collapse
Affiliation(s)
- Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
2
|
Li J, Han N, Li Y, Zhao F, Xiong W, Zeng Z. The synergistic antibacterial activity and mechanism of colistin-oxethazaine combination against gram-negative pathogens. Front Pharmacol 2024; 15:1363441. [PMID: 38576480 PMCID: PMC10991713 DOI: 10.3389/fphar.2024.1363441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Background The rapid spread of bacteria with plasmid-mediated resistance to antibiotics poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Methods Synergistic activity of the FDA-approved agent oxethazine combined with colistin was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of their combination of oxethazine and colistin was explored by fluorescent dye, scanning electron microscopy (SEM) and LC-MS/MS. The synergistic efficacy was evaluated in vivo by the Galleria mellonella and mouse sepsis models. Results In this study, we found that oxethazine could effectively enhance the antibacterial activity of colistin against both mcr-positive and -negative pathogens, and mechanistic assays revealed that oxethazine could improve the ability of colistin to destruct bacterial outer membrane and cytoplasmic membrane permeability. In addition, their combination triggered the accumulation of reactive oxygen species causing additional damage to the membrane structure resulting in cell death. Furthermore, oxethazine significantly enhanced the therapeutic efficacy of colistin in two animal models. Conclusion These results suggested that oxethazine, as a promising antibiotic adjuvant, can effectively enhance colistin activity, providing a potential strategy for treating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Alper Öztürk A, Başaran E, Şenel B, Demirel M, Sarica Ş. Synthesis, characterization, antioxidant activity of Quercetin, Rutin and Quercetin-Rutin incorporated β-cyclodextrin inclusion complexes and determination of their activity in NIH-3T3, MDA-MB-231 and A549 cell lines. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
de Freitas Domingues JS, Dos Santos SMD, das Neves Rodrigues Ferreira J, Monti BM, Baggio DF, Hummig W, Araya EI, de Paula E, Chichorro JG, Ferreira LEN. Antinociceptive effects of bupivacaine and its sulfobutylether-β-cyclodextrin inclusion complex in orofacial pain. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1405-1417. [PMID: 35909169 DOI: 10.1007/s00210-022-02278-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Bupivacaine hydrochloride (BVC) represents an option to produce long-lasting analgesia, and complexation in cyclodextrins has shown improvements in biopharmaceutical properties. This study aimed to characterize and test the cytotoxicity and antinociceptive effects of BVC complexed in sulfobutylether-β-cyclodextrin (SBEβCD). The kinetics and stoichiometry of complexation and BVC-SBEβCD association constant were evaluated by phase solubility study and Job's plot. Evidence of the BVC-SBEβCD complex formation was obtained from scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The cytotoxicity was evaluated in keratinocyte (HaCaT) and neuroblastoma (SH-SY5Y). Antinociceptive effects were registered via orofacial pain models: the formalin test, carrageenan-induced hyperalgesia, and postoperative pain (intraoral incision). The complex formation occurred at a 1:1 BVC-SBEβCD molar ratio, with a low association constant (13.2 M-1). SEM, DSC, and FTIR results demonstrated the host-guest interaction. The IC50% values determined in SH-SY5Y were 216 µM and 149 µM for BVC and BVC-SBEβCD, respectively (p < 0.05). There was no difference in HaCaT IC50%. In orofacial pain model, BVC-SBEβCD significantly prolonged antinociceptive effect, in about 2 h, compared to plain BVC. SBEβCD can be used as a drug delivery system for bupivacaine, whereas the complex showed long-lasting analgesic effects.
Collapse
Affiliation(s)
| | | | | | - Bianca Miguel Monti
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Wagner Hummig
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | |
Collapse
|
5
|
Ferreira L, Campos J, Veiga F, Cardoso C, Cláudia Paiva-Santos A. Cyclodextrin-based delivery systems in parenteral formulations: a critical update review. Eur J Pharm Biopharm 2022; 178:35-52. [PMID: 35868490 DOI: 10.1016/j.ejpb.2022.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/17/2022] [Indexed: 11/04/2022]
Abstract
Parenteral formulations are indispensable in clinical practice and often are the only option to administer drugs that cannot be administrated through other routes, such as proteins and certain anticancer drugs - which are indispensable to treat some of the most prevailing chronic diseases worldwide (like diabetes and cancer). Additionally, parenteral formulations play a relevant role in emergency care since they are the only ones that provide an immediate action of the drug after its administration. However, the development of parenteral formulations is a complex task owing to the specific quality and safety requirements set for these preparations and the intrinsic properties of the drugs. Amongst all the strategies that can be useful in the development of parenteral formulations, the formation of water-soluble host-guest inclusion complexes with cyclodextrins (CDs) has proven to be one of the most advantageous. CDs are multifunctional pharmaceutical excipients able to form water-soluble host-guest inclusion complexes with a wide variety of molecules, particularly drugs, and thus improve their apparent water-solubility, chemical stability, and bioavailability, to make them suitable for parenteral administration. Besides, CDs can be employed as building blocks of more complex injectable drug delivery systems with enhanced characteristics, such as nanoparticles and supramolecular hydrogels, that has been found particularly beneficial for the delivery of anticancer drugs. However, only a few CDs are considered safe when parenterally administered, and some of these types are already approved to be used in parenteral dosage forms. Therefore, the application of CDs in the development of parenteral formulations has been a more common practice in the last few years, due to their significant worldwide acceptance by the health authorities, promoting the development of safer and more efficient injectable drug delivery systems.
Collapse
Affiliation(s)
- Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Oxethazaine inhibits esophageal squamous cell carcinoma proliferation and metastasis by targeting aurora kinase A. Cell Death Dis 2022; 13:189. [PMID: 35217647 PMCID: PMC8881465 DOI: 10.1038/s41419-022-04642-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC), a malignant neoplasm with high incidence, is a severe global public health threat. The current modalities used for treating ESCC include surgery, chemotherapy, and radiotherapy. Although ESCC management and treatment strategies have improved over the last decade, the overall 5-year survival rate remains <20%. Therefore, the identification of novel therapeutic strategies that can increase ESCC patient survival rates is urgently needed. Oxethazaine, an amino-amide anesthetic agent, is mainly prescribed in combination with antacids to relieve esophagitis, dyspepsia, and other gastric disorders. In the present study, we found that oxethazaine inhibited the proliferation and migration of esophageal cancer cells. According to the results of in vitro screening and binding assays, oxethazaine binds directly to AURKA, suppresses AURKA activity, and inhibits the downstream effectors of AURKA. Notably, we found that oxethazaine suppressed tumor growth in three patient-derived esophageal xenograft mouse models and tumor metastasis in vivo. Our findings suggest that oxethazaine can inhibit ESCC proliferation and metastasis in vitro and in vivo by targeting AURKA.
Collapse
|
7
|
Sun C, Cao J, Wang Y, Chen J, Huang L, Zhang H, Wu J, Sun C. Ultrasound-mediated molecular self-assemble of thymol with 2-hydroxypropyl-β-cyclodextrin for fruit preservation. Food Chem 2021; 363:130327. [PMID: 34144424 DOI: 10.1016/j.foodchem.2021.130327] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
In this study, the inclusion complex (IC) of thymol with 2-hydroxypropyl-β-cyclodextrin (HPβCD) was fast synthetized by ultrasonic technology and its antifungal activities were evaluated. The thymol/HPβCD-IC was characterized by UV-vis absorption spectroscopy, fluorescence emission spectroscopy, powder X-ray diffraction, FT-IR, 1H-NMR, TGA and DSC. The phase solubility studies proved that the aqueous solubility of thymol was significantly improved by forming the inclusion complex with HPβCD, and the thermal stability analysis showed that thymol/HPβCD-IC had a better thermal stability than pure thymol. The in vitro antifungal activities of thymol/HPβCD-IC against Botrytis cinerea, Penicillium digitatum and Alternaria alternata were significantly improved compared with pure thymol. Furthermore, the gray mold rot of tomatoes was evidently inhibited by thymol/HPβCD-IC treatment in vivo study. Therefore, the complexation with HPβCD assisted by ultrasound is a promising approach to solubilize and stabilize thymol for application as an antifungal agent in fruit preservation.
Collapse
Affiliation(s)
- Cui Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - He Zhang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Jue Wu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Batista da Silva C, Volpato MC, Muniz BV, dos Santos CP, Serpe L, Ferreira LEN, de Melo NFS, Fraceto LF, Groppo FC, Franz-Montan M. Promising potential of articaine-loaded poly(epsilon-caprolactone) nanocapules for intraoral topical anesthesia. PLoS One 2021; 16:e0246760. [PMID: 33571275 PMCID: PMC7877576 DOI: 10.1371/journal.pone.0246760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/25/2021] [Indexed: 01/12/2023] Open
Abstract
To determine whether the permeation capacity and analgesic efficacy of articaine (ATC) could be increased and cytotoxicity decreased by encapsulation in poly(ɛ-caprolactone) nanocapsules (ATCnano), aiming at local or topical anesthesia in dentistry. Cellular viability was evaluated (using the MTT test and fluorescence microscopy) after 1 h and 24 h exposure of HaCaT cells to ATC, ATCnano, ATC with epinephrine (ATCepi), and ATC in nanocapsules with epinephrine (ATCnanoepi). The profiles of permeation of 2% ATC and 2% ATCnano across swine esophageal epithelium were determined using Franz-type vertical diffusion cells. Analgesic efficacy was evaluated with a von Frey anesthesiometer in a postoperative pain model in rats, comparing the 2% ATC, 2% ATCnano, 2% ATCepi, and 2% ATCnanoepi formulations to 4% ATCepi (a commercially available formulation). We show that use of the nanocapsules decreased the toxicity of articaine (P<0.0001) and increased its flux (P = 0.0007). The 2% ATCepi and 4% ATCepi formulations provided higher analgesia success and duration (P<0.05), compared to 2% ATC, 2% ATCnano, and 2% ATCnanoepi. Articaine-loaded poly(ɛ-caprolactone) nanocapsules constitute a promising formulation for intraoral topical anesthesia (prior to local anesthetic injection), although it is not effective when injected in inflamed tissues for pain control, such as irreversible pulpitis.
Collapse
Affiliation(s)
- Camila Batista da Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
- Health Sciences, University of Mogi das Cruzes–UMC, Mogi das Cruzes, São Paulo, Brazil
| | - Maria Cristina Volpato
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Bruno Vilela Muniz
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
- Itapeva Faculty of Social and Agrarian Sciences—FAIT, Itapeva, São Paulo, Brazil
| | - Cleiton Pita dos Santos
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Luciano Serpe
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Luiz Eduardo Nunes Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
- Laboratory of Inflammation and Immunology, Guarulhos University–UNG, Guarulhos, São Paulo, Brazil
| | - Nathalie Ferreira Silva de Melo
- Department of Environmental Engineering, São Paulo State University, Sorocaba, SP, Brazil
- Department of Immunology and Molecular Biology, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil
| | | | - Francisco Carlos Groppo
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Capsaicin-Cyclodextrin Complex Enhances Mepivacaine Targeting and Improves Local Anesthesia in Inflamed Tissues. Int J Mol Sci 2020; 21:ijms21165741. [PMID: 32785200 PMCID: PMC7460887 DOI: 10.3390/ijms21165741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/02/2023] Open
Abstract
Acidic environments, such as in inflamed tissues, favor the charged form of local anesthetics (LA). Hence, these drugs show less cell permeation and diminished potency. Since the analgesic capsaicin (CAP) triggers opening of the TRPV1 receptor pore, its combination with LAs could result in better uptake and improved anesthesia. We tested the above hypothesis and report here for the first time the analgesia effect of a two-drug combination (LA and CAP) on an inflamed tissue. First, CAP solubility increased up to 20 times with hydroxypropyl-beta-cyclodextrin (HP-β-CD), as shown by the phase solubility study. The resulting complex (HP-β-CD-CAP) showed 1:1 stoichiometry and high association constant, according to phase-solubility diagrams and isothermal titration calorimetry data. The inclusion complex formation was also confirmed and characterized by differential scanning calorimetry (DSC), X-ray diffraction, and 1H-NMR. The freeze-dried complex showed physicochemical stability for at least 12 months. To test in vivo performance, we used a pain model based on mouse paw edema. Results showed that 2% mepivacaine injection failed to anesthetize mice inflamed paw, but its combination with complexed CAP resulted in pain control up to 45 min. These promising results encourages deeper research of CAP as an adjuvant for anesthesia in inflamed tissues and cyclodextrin as a solubilizing agent for targeting molecules in drug delivery.
Collapse
|
10
|
Burga-Sánchez J, Ferreira LEN, Volpato MC, Cabeça LF, Braga M, Fraceto LF, de Paula E, Groppo FC. Physicochemical characterization and cytotoxicity of articaine-2-hydroxypropyl-β-cyclodextrin inclusion complex. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1313-1323. [PMID: 32372351 DOI: 10.1007/s00210-020-01879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
Articaine (ATC) is one of the most widely used local anesthetics in dentistry. Despite its safety, local toxicity has been reported. This study aimed to develop an ATC-2- hydroxypropyl-β-cyclodextrin inclusion complex (ATC HPβCD) and to assess its toxicity in vitro. The inclusion complex was performed by solubilization, followed by a fluorimetric and job plot assay to determine the complex stoichiometry. Scanning electron microscopy, DOSY- 1 H-NMR, differential scanning calorimetry (DSC), and sustained release kinetics were used to confirm the inclusion complex formation. In vitro cytotoxicity was analyzed by MTT assay and immunofluorescence in HGF cells. Fluorimetric and job plot assay determined the inclusion complex stoichiometry (ATC:HPβCD = 1:1) and complex formation time (400 min), as indicated by a strong host/guest interaction (Ka = 117.8 M - 1), complexed fraction (f = 41.4%), and different ATC and ATC HPβCD melting points (172 °C e 235 °C, respectively). The mean of cell viability was 31.87% and 63.17% for 20-mM ATC and 20-mM ATC HPβCD, respectively. Moreover, remarkable cell toxicity was observed with free ATC by immunofluorescence. These results indicate the ATC HPβCD complex could be used to improve the safety of ATC. Further research are needed to establish the anesthetic safety and effectiveness in vivo .
Collapse
Affiliation(s)
- Jonny Burga-Sánchez
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Avenida Limeira, 901, Piracicaba, SP, 13414-903, Brazil.
| | - Luiz Eduardo Nunes Ferreira
- Laboratory of Inflammation and Immunology, Guarulhos University, Praça Teresa Cristina, 229 - Centro, Guarulhos, SP, 07023-070, Brazil
| | - Maria Cristina Volpato
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Avenida Limeira, 901, Piracicaba, SP, 13414-903, Brazil
| | - Luis Fernando Cabeça
- Parana Federal Technological University - Londrina City, Avenida dos Pioneiros 3131, Jd Morumbi, Londrina, PR, 86036-370, Brazil
| | - Mario Braga
- Department of Biochemistry, Biology Institute, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Leonardo Fernandes Fraceto
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março, 511 - Aparecidinha, Sorocaba, SP, 18087-180, Brazil
| | - Eneida de Paula
- Department of Biochemistry, Biology Institute, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Avenida Limeira, 901, Piracicaba, SP, 13414-903, Brazil
| |
Collapse
|
11
|
Complexation of the local anesthetic pramoxine with hydroxypropyl-beta-cyclodextrin can improve its bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Nascimento Vieira AL, Franz-Montan M, Cabeça LF, de Paula E. Anaesthetic benefits of a ternary drug delivery system (Ropivacaine-in-Cyclodextrin-in-Liposomes): in-vitro and in-vivo evaluation. ACTA ACUST UNITED AC 2019; 72:396-408. [PMID: 31859378 DOI: 10.1111/jphp.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To evaluate whether a ternary system composed of hydroxypropyl-β-cyclodextrin (HP-βCD) further encapsulated into egg phosphatidylcholine liposomes (LUV) could prolong the action and reduce the toxicity of ropivacaine (RVC). METHODS Dynamic light scattering and NMR were used to characterize the inclusion complex (RVC : HP-βCD), liposomal (RVC : LUV) and ternary (LUV : RVC : HP-βCD) systems containing 0.25% RVC. Their encapsulation efficiency, release kinetics, in-vitro cytotoxicity and in-vivo anaesthetic effect (paw-withdraw tests in mice) were also evaluated. KEY FINDINGS 1 : 1 RVC : HP-βCD inclusion complex was encapsulated in liposomes (220.2 ± 20.3 nm size, polydispersity <0.25, zeta potentials = -31.7 ± 1.4 mV). NMR (diffusion-ordered spectroscopy (DOSY)) revealed stronger anaesthetic binding to LUV : RVC : HP-βCD (Ka = 342 m-1 ) than to RVC : HP-βCD (Ka = 128 m-1 ) or liposomal formulation (Ka = 22 m-1 ). The formulations promoted in-vitro sustained drug release and partially reverted the cytotoxicity of RVC against 3T3 fibroblasts in the profile: LUV : RVC : HP-βCD ≥ RVC : HP-βCD > RVC : LUV. Accordingly, in-vivo sensory block of free RVC (180 min) was prolonged ca. 1.7 times with the ternary system and RVC : HP-βCD (300 min) and 1.3 times with RVC : LUV (240 min). CONCLUSIONS These results confirm the suitability of this double-carrier system in clinical practice, to decrease the toxicity and prolong the anaesthesia time evoked by RVC.
Collapse
Affiliation(s)
- Ana Laís Nascimento Vieira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - Unicamp, Campinas, Brazil
| | - Michelle Franz-Montan
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - Unicamp, Piracicaba, Brazil
| | - Luís Fernando Cabeça
- Department of Chemistry, Federal Technological University of Paraná, Londrina, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - Unicamp, Campinas, Brazil
| |
Collapse
|
13
|
Alshaer W, Zraikat M, Amer A, Nsairat H, Lafi Z, Alqudah DA, Al Qadi E, Alsheleh T, Odeh F, Alkaraki A, Zihlif M, Bustanji Y, Fattal E, Awidi A. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv 2019; 9:30976-30988. [PMID: 35529392 PMCID: PMC9072562 DOI: 10.1039/c9ra05636j] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023] Open
Abstract
Echinomycin, a DNA bis-intercalator peptide, belongs to the family of quinoxaline antibiotics. Echinomycin exhibits potent antitumor and antimicrobial activity. However, it is highly water insoluble and suffers from low bioavailability and unwanted side effects. Therefore, developing new formulations and delivery systems that can enhance echinomycin solubility and therapeutic potency is needed for further clinical application. In this study, echinomycin has been complexed into the hydrophobic cavity of γ-cyclodextrin (γCD) then encapsulated into PEGylated liposomes. The anti-proliferative and anti-invasive effect has been evaluated against U-87 MG glioblastoma cells. Echinomycin-in-γCD inclusion complexes have been characterized by phase solubility assay, TLC, and 1H-NMR. The echinomycin-in-γCD inclusion complexes have been loaded into liposomes using a thin film hydration method to end up with echinomycin-in-γCD-in-liposomes. Drug-loaded liposomes were able to inhibit cell proliferation with IC50 of 1.0 nM. Moreover, echinomycin-in-γCD-in-liposomes were found to inhibit the invasion of U-87 MG cells using the spheroid gel invasion assay. In conclusion, the current work describes for the first time γCD-echinomycin complexes and their encapsulation into PEGylated liposomes.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
| | - Manar Zraikat
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Amer Amer
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
| | - Hamdi Nsairat
- Department of Chemistry, Faculty of Science, The University of Jordan Amman Jordan
| | - Zainab Lafi
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
| | - Enas Al Qadi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Tasneem Alsheleh
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Fadwa Odeh
- Department of Chemistry, Faculty of Science, The University of Jordan Amman Jordan
| | - Arwa Alkaraki
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Yasser Bustanji
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
- HMCSR, The University of Jordan Amman Jordan
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay Châtenay-Malabry France
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
- Department of Hematology, Jordan University Hospital, The University of Jordan Amman Jordan
| |
Collapse
|
14
|
Comparison of antinociceptive effects of plain lidocaine versus lidocaine complexed with hydroxypropyl-β-cyclodextrin in animal models of acute and persistent orofacial pain. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:573-583. [PMID: 30613838 DOI: 10.1007/s00210-018-01609-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Herein, it was investigated whether a complex of lidocaine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) would present a better antinociceptive profile in vivo when compared with plain lidocaine in models of orofacial pain. Plain lidocaine (LDC) and complexed lidocaine (LDC:HP-β-CD) were initially evaluated in vitro to determine the release rate of the two formulations. Subsequently, the effect of both formulations was evaluated in independent groups of rats submitted to the orofacial formalin test, induction of facial heat hyperalgesia by capsaicin and carrageenan, and induction of facial heat and mechanical hyperalgesia by constriction of the infraorbital nerve. LDC:HP-β-CD led to a reduction in the lidocaine release assessed in the in vitro release assay compared to plain LDC. Both formulations presented an antinociceptive effect in all models, but LDC:HP-β-CD showed a better effect in the second phase of the formalin response, in carrageenan-induced heat hyperalgesia, and in the heat hyperalgesia associated to infraorbital nerve constriction. Our results show that complexation improved in vivo antinociceptive effects of LDC, but further studies are necessary to elucidate what properties contribute to the better effect of the complexed formulation on this models and/or what characteristics of the pain model facilitate the action of the complexed formulation.
Collapse
|
15
|
Song S, Chong Y, Fu H, Ning X, Shen H, Zhang Z. HP-β-CD Functionalized Fe 3O 4/CNPs-Based Theranostic Nanoplatform for pH/NIR Responsive Drug Release and MR/NIRFL Imaging-Guided Synergetic Chemo/Photothermal Therapy of Tumor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33867-33878. [PMID: 30215249 DOI: 10.1021/acsami.8b09999] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The combination of chemotherapy and photothermal therapy has aroused great interest due to its better antitumor effect than either single therapy alone. Herein, we report on the development of hydroxypropyl-β-cyclodextrin functionalized Fe3O4/carbon nanoparticles (HFCNPs) for pH/near-infrared (NIR) responsive drug release, magnetic resonance/NIR fluorescence (MR/NIRFL) imaging-guided combined chemo/photothermal therapy. The high doxorubicin (DOX) loading capacity (61.2%) and controlled drug release by NIR irradiation and weak acid microenvironment render HFCNPs a good vector for DOX delivery and controlled release. Moreover, the MR/NIRFL dual-modal imaging was used to define the tumor location, size, and boundary and to track the tumor accumulation of HFCNPs and their biodistribution. The efficient accumulation and prolonged retention time of the nanoparticles in tumor are beneficial to tumor therapy. Taking advantage of the NIR laser-induced heating and hence promoted drug permeation, remarkable tumor inhibition was realized by synergetic chemo/photothermal therapy. In conclusion, the current work offers a promising approach to the development of smart and efficient multimodal cancer-targeted nanotheranostics.
Collapse
Affiliation(s)
- Saijie Song
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
- School of Nano Technology and Nano Bionics , University of Science and Technology of China , Hefei 230026 , China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- School of Nano Technology and Nano Bionics , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
16
|
Experimental and molecular modeling investigations of inclusion complexes of imazapyr with 2-hydroxypropyl(β/γ) cyclodextrin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|